diff --git a/Dockerfile b/Dockerfile index f7270a8..3c8b2f9 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,27 +1,20 @@ # syntax=docker/dockerfile:1 -# Initialize device type args -# use build args in the docker build command with --build-arg="BUILDARG=true" + +# Argumenty budowania ARG USE_CUDA=false ARG USE_OLLAMA=false -# Tested with cu117 for CUDA 11 and cu121 for CUDA 12 (default) ARG USE_CUDA_VER=cu121 -# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers -# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard -# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) -# IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 ARG USE_RERANKING_MODEL="" - -# Tiktoken encoding name; models to use can be found at https://huggingface.co/models?library=tiktoken ARG USE_TIKTOKEN_ENCODING_NAME="cl100k_base" - ARG BUILD_HASH=dev-build -# Override at your own risk - non-root configurations are untested ARG UID=0 ARG GID=0 -######## WebUI frontend ######## +# Etap budowania frontendu FROM --platform=$BUILDPLATFORM node:22-alpine3.20 AS build +ARG TARGETPLATFORM +ARG BUILDPLATFORM ARG BUILD_HASH WORKDIR /app @@ -33,10 +26,11 @@ COPY . . ENV APP_BUILD_HASH=${BUILD_HASH} RUN npm run build -######## WebUI backend ######## -FROM --platform=$BUILDPLATFORM python:3.11-slim-bookworm AS base +# Etap budowania backendu +FROM --platform=$TARGETPLATFORM python:3.11-slim-bookworm AS base -# Use args +# Użyj argumentów +ARG TARGETPLATFORM ARG USE_CUDA ARG USE_OLLAMA ARG USE_CUDA_VER @@ -45,53 +39,35 @@ ARG USE_RERANKING_MODEL ARG UID ARG GID -## Basis ## +# Ustawienia środowiskowe ENV ENV=prod \ PORT=8080 \ - # pass build args to the build USE_OLLAMA_DOCKER=${USE_OLLAMA} \ USE_CUDA_DOCKER=${USE_CUDA} \ USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \ USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} \ - USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL} - -## Basis URL Config ## -ENV OLLAMA_BASE_URL="/ollama" \ - OPENAI_API_BASE_URL="" - -## API Key and Security Config ## -ENV OPENAI_API_KEY="" \ + USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL} \ + OLLAMA_BASE_URL="/ollama" \ + OPENAI_API_BASE_URL="" \ + OPENAI_API_KEY="" \ WEBUI_SECRET_KEY="" \ SCARF_NO_ANALYTICS=true \ DO_NOT_TRACK=true \ - ANONYMIZED_TELEMETRY=false - -#### Other models ######################################################### -## whisper TTS model settings ## -ENV WHISPER_MODEL="base" \ - WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" - -## RAG Embedding model settings ## -ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \ - RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \ - SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" - -## Tiktoken model settings ## -ENV TIKTOKEN_ENCODING_NAME="cl100k_base" \ - TIKTOKEN_CACHE_DIR="/app/backend/data/cache/tiktoken" - -## Hugging Face download cache ## -ENV HF_HOME="/app/backend/data/cache/embedding/models" - -## Torch Extensions ## -# ENV TORCH_EXTENSIONS_DIR="/.cache/torch_extensions" - -#### Other models ########################################################## + ANONYMIZED_TELEMETRY=false \ + WHISPER_MODEL="base" \ + WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" \ + RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL" \ + RAG_RERANKING_MODEL="$USE_RERANKING_MODEL" \ + SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" \ + TIKTOKEN_ENCODING_NAME="cl100k_base" \ + TIKTOKEN_CACHE_DIR="/app/backend/data/cache/tiktoken" \ + HF_HOME="/app/backend/data/cache/embedding/models" WORKDIR /app/backend ENV HOME=/root -# Create user and group if not root + +# Tworzenie użytkownika i grupy, jeśli nie root RUN if [ $UID -ne 0 ]; then \ if [ $GID -ne 0 ]; then \ addgroup --gid $GID app; \ @@ -102,65 +78,40 @@ RUN if [ $UID -ne 0 ]; then \ RUN mkdir -p $HOME/.cache/chroma RUN echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id -# Make sure the user has access to the app and root directory +# Upewnij się, że użytkownik ma dostęp do katalogów RUN chown -R $UID:$GID /app $HOME -RUN if [ "$USE_OLLAMA" = "true" ]; then \ - apt-get update && \ - # Install pandoc and netcat - apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && \ - apt-get install -y --no-install-recommends gcc python3-dev && \ - # for RAG OCR - apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \ - # install helper tools - apt-get install -y --no-install-recommends curl jq && \ - # install ollama - curl -fsSL https://ollama.com/install.sh | sh && \ - # cleanup - rm -rf /var/lib/apt/lists/*; \ - else \ - apt-get update && \ - # Install pandoc, netcat and gcc - apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && \ - apt-get install -y --no-install-recommends gcc python3-dev && \ - # for RAG OCR - apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \ - # cleanup - rm -rf /var/lib/apt/lists/*; \ - fi +# Instalacja zależności systemowych +RUN apt-get update && \ + apt-get install -y --no-install-recommends \ + git build-essential pandoc gcc netcat-openbsd curl jq \ + python3-dev ffmpeg libsm6 libxext6 && \ + if [ "$USE_OLLAMA" = "true" ]; then \ + curl -fsSL https://ollama.com/install.sh | sh; \ + fi && \ + rm -rf /var/lib/apt/lists/* -# install python dependencies +# Instalacja zależności Pythona COPY --chown=$UID:$GID ./backend/requirements.txt ./requirements.txt RUN pip3 install uv && \ if [ "$USE_CUDA" = "true" ]; then \ - # If you use CUDA the whisper and embedding model will be downloaded on first use - pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \ - uv pip install --system -r requirements.txt --no-cache-dir && \ - python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \ - python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \ - python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \ + pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir; \ else \ - pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \ + pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir; \ + fi && \ uv pip install --system -r requirements.txt --no-cache-dir && \ python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \ - python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \ - python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \ - fi; \ + python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \ + python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])" && \ chown -R $UID:$GID /app/backend/data/ - - -# copy embedding weight from build -# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2 -# COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx - -# copy built frontend files +# Kopiowanie plików frontendowych COPY --chown=$UID:$GID --from=build /app/build /app/build COPY --chown=$UID:$GID --from=build /app/CHANGELOG.md /app/CHANGELOG.md COPY --chown=$UID:$GID --from=build /app/package.json /app/package.json -# copy backend files +# Kopiowanie plików backendowych COPY --chown=$UID:$GID ./backend . EXPOSE 8080