From 51828191cc6acc38817353479d1edff3dc80972a Mon Sep 17 00:00:00 2001 From: "l.gabrysiak" Date: Wed, 26 Feb 2025 13:17:57 +0100 Subject: [PATCH] mod gemma --- gemma.py | 19 ++++++++++--------- 1 file changed, 10 insertions(+), 9 deletions(-) diff --git a/gemma.py b/gemma.py index aa58c21..86f6bd1 100644 --- a/gemma.py +++ b/gemma.py @@ -64,17 +64,18 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True) # 8️⃣ Parametry treningu training_args = TrainingArguments( output_dir="./results", - per_device_train_batch_size=2, - gradient_accumulation_steps=4, # Symuluje większy batch size - num_train_epochs=5, - logging_dir="./logs", - save_strategy="epoch", + evaluation_strategy="steps", # Zmienione na "steps" + eval_steps=500, # Dodane + save_strategy="steps", # Zmienione na "steps" + save_steps=500, # Dodane, musi być takie samo jak eval_steps lub jego wielokrotność learning_rate=2e-5, - warmup_steps=100, - fp16=True, # Używa mixed precision training - evaluation_strategy="steps", - eval_steps=500, + per_device_train_batch_size=2, + per_device_eval_batch_size=2, + num_train_epochs=5, + weight_decay=0.01, load_best_model_at_end=True, + metric_for_best_model="loss", # lub inna metryka, którą chcesz optymalizować + greater_is_better=False, # Ustaw na True, jeśli wyższa wartość metryki jest lepsza ) # 9️⃣ Data Collator