diff --git a/file_catalog.json b/catalog.json similarity index 100% rename from file_catalog.json rename to catalog.json diff --git a/hft.py b/hft.py index 7c184d5..a7f970a 100644 --- a/hft.py +++ b/hft.py @@ -1,8 +1,6 @@ import os import torch import torch.nn as nn -from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling -from datasets import Dataset import re import json import PyPDF2 @@ -10,252 +8,286 @@ import docx2txt import pytesseract from PIL import Image from collections import defaultdict +from transformers import ( + AutoTokenizer, + AutoModelForCausalLM, + TrainingArguments, + DataCollatorForLanguageModeling +) +from datasets import Dataset from huggingface_hub import login # Konfiguracja -os.environ['TORCH_USE_CUDA_DSA'] = '1' os.environ["TOKENIZERS_PARALLELISM"] = "false" -login(token="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") +login(token="TWÓJ_TOKEN_HUGGINGFACE") -class SourceMapper: +class LegalAITrainer: def __init__(self): - self.source_to_idx = defaultdict(lambda: len(self.source_to_idx)) + self.source_mapper = defaultdict(lambda: len(self.source_mapper)) self.idx_to_source = {} - - def add_source(self, source): - if source and source not in self.source_to_idx: - idx = self.source_to_idx[source] - self.idx_to_source[idx] = source + self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + + class SourceMapper: + def __init__(self): + self.source_to_idx = defaultdict(lambda: len(self.source_to_idx)) + self.idx_to_source = {} + + def add_source(self, source): + if source and source not in self.source_to_idx: + idx = self.source_to_idx[source] + self.idx_to_source[idx] = source + + def get_idx(self, source): + return self.source_to_idx[source] if source else -1 + + def get_source(self, idx): + return self.idx_to_source.get(idx, "Unknown") + + class LegalModel(nn.Module): + def __init__(self, model_name, config): + super().__init__() + self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config) + self.source_embedding = nn.Embedding(100000, config.hidden_size, padding_idx=-1) + self.confidence_layer = nn.Linear(config.hidden_size, 1) - def get_idx(self, source): - return self.source_to_idx[source] if source else -1 - - def get_source(self, idx): - return self.idx_to_source.get(idx, "Unknown") + # Freeze base model + for param in self.base_model.parameters(): + param.requires_grad = False + + # Trainable components + for layer in [self.source_embedding, self.confidence_layer]: + for param in layer.parameters(): + param.requires_grad = True -def load_file_catalog(catalog_path): - try: - with open(catalog_path, 'r', encoding='utf-8') as file: - return json.load(file) - except Exception as e: - print(f"Błąd wczytywania katalogu plików: {str(e)}") - return {} + def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None): + if source_idx is not None: + source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1) + source_embeds = self.source_embedding(source_idx).unsqueeze(1) + inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds + outputs = self.base_model( + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + labels=labels + ) + else: + outputs = self.base_model( + input_ids=input_ids, + attention_mask=attention_mask, + labels=labels + ) + + confidence = torch.sigmoid(self.confidence_layer(outputs.hidden_states[-1].mean(dim=1))) + return { + "loss": outputs.loss, + "logits": outputs.logits, + "confidence": confidence, + "hidden_states": outputs.hidden_states + } -def identify_legal_document(filename, file_catalog): - base_name = os.path.splitext(filename)[0].lower() - return file_catalog.get(base_name, "Opracowanie własne") + def load_file_catalog(self, catalog_path): + try: + with open(catalog_path, 'r', encoding='utf-8') as f: + return json.load(f) + except Exception as e: + print(f"Błąd ładowania katalogu: {str(e)}") + return {} -def extract_text_from_file(file_path): - try: - _, ext = os.path.splitext(file_path) - ext = ext.lower() - - if ext in ['.txt', '.md']: - with open(file_path, 'r', encoding='utf-8') as file: - return file.read() - elif ext == '.pdf': - text = "" - try: - with open(file_path, 'rb') as file: - reader = PyPDF2.PdfReader(file) + def extract_text(self, file_path): + ext = os.path.splitext(file_path)[1].lower() + try: + if ext in ['.txt', '.md']: + with open(file_path, 'r', encoding='utf-8') as f: + return f.read() + elif ext == '.pdf': + text = "" + with open(file_path, 'rb') as f: + reader = PyPDF2.PdfReader(f) for page in reader.pages: text += page.extract_text() or "" - except Exception as e: - print(f"Błąd PDF: {str(e)}") - return text - elif ext in ['.doc', '.docx']: - return docx2txt.process(file_path) - elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: - return pytesseract.image_to_string(Image.open(file_path)) - else: - print(f"Nieobsługiwany format pliku: {ext}") + return text + elif ext in ['.doc', '.docx']: + return docx2txt.process(file_path) + elif ext in ['.jpg', '.jpeg', '.png']: + return pytesseract.image_to_string(Image.open(file_path)) + else: + return "" + except Exception as e: + print(f"Błąd przetwarzania {file_path}: {str(e)}") return "" - except Exception as e: - print(f"Błąd ekstrakcji tekstu: {str(e)}") - return "" -def prepare_dataset(directory, catalog_path, source_mapper): - file_catalog = load_file_catalog(catalog_path) - data = [] - - print(f"\n{'='*50}\nDIAGNOSTYKA DANYCH\n{'='*50}") - - for root, _, files in os.walk(directory): - for file in files: - file_path = os.path.join(root, file) - print(f"\nPrzetwarzanie pliku: {file_path}") - - try: - text = extract_text_from_file(file_path) - if not text.strip(): - print("Pominięto - brak tekstu") - continue - - print(f"Długość tekstu: {len(text)} znaków") + def prepare_data(self, data_dir, catalog_path): + catalog = self.load_file_catalog(catalog_path) + data = [] + source_mapper = self.SourceMapper() + + for root, _, files in os.walk(data_dir): + for file in files: + file_path = os.path.join(root, file) + text = self.extract_text(file_path) - doc_type = identify_legal_document(file, file_catalog) - print(f"Rozpoznany typ dokumentu: {doc_type}") + if not text: + continue + + doc_type = catalog.get(os.path.splitext(file)[0].lower(), "Opracowanie własne") if doc_type != "Opracowanie własne": - articles = re.split(r'(?i)(Art[\.\s]+\d+[\.\s]?)', text) - articles = [a.strip() for a in articles if a.strip()] - - print(f"Znaleziono {len(articles)} fragmentów") - - for i in range(0, len(articles)-1, 2): - article_number = articles[i] - article_content = articles[i+1] + articles = re.split(r'(?i)(Art\.\s*\d+[a-z]*)', text) + for i in range(1, len(articles), 2): + art_num = articles[i].strip() + content = articles[i+1].strip() - if len(article_content) < 50: + if len(content) < 100: continue - source = f"{doc_type}, {article_number}" + source = f"{doc_type}, {art_num}" source_mapper.add_source(source) data.append({ - "text": f"{article_number} {article_content}", - "source_idx": source_mapper.get_idx(source) + "text": f"[LEGAL] {art_num} {content}", + "source_idx": source_mapper.get_idx(source), + "is_legal": 1 }) else: - clean_text = re.sub(r'\s+', ' ', text).strip() - chunks = [clean_text[i:i+512] for i in range(0, len(clean_text), 512)] - chunks = [c for c in chunks if c.strip()] - + chunks = [f"[GENERAL] {text[i:i+512]}" for i in range(0, len(text), 512)] for chunk in chunks: data.append({ "text": chunk, - "source_idx": -1 + "source_idx": -1, + "is_legal": 0 }) - print(f"Dodano {len(chunks)} chunków") - - except Exception as e: - print(f"Błąd podczas przetwarzania pliku: {str(e)}") - continue - - print(f"\nPodsumowanie przygotowania danych:") - print(f"Łączna liczba przykładów: {len(data)}") - if data: - print("Przykładowy wpis:") - print(json.dumps(data[0], indent=2, ensure_ascii=False)) - else: - print("BRAK DANYCH - sprawdź diagnostykę powyżej") - return data + return Dataset.from_dict({k: [d[k] for d in data] for k in data[0]}), source_mapper -class CustomModel(nn.Module): - def __init__(self, model_name, config): - super().__init__() - self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config) - self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1) - - for param in self.base_model.parameters(): - param.requires_grad = False - for param in self.base_model.get_output_embeddings().parameters(): - param.requires_grad = True - - def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs): - if source_idx is not None: - valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1) - source_embeds = self.source_embedding(valid_indices).unsqueeze(1) - inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds - return self.base_model( - inputs_embeds=inputs_embeds, - attention_mask=attention_mask, - labels=labels, - **kwargs + def train(self, model_name="crumb/nano-mistral", data_dir="data", catalog_path="catalog.json"): + # Przygotowanie danych + dataset, source_mapper = self.prepare_data(data_dir, catalog_path) + tokenizer = AutoTokenizer.from_pretrained(model_name) + tokenizer.pad_token = tokenizer.eos_token + + # Tokenizacja + def tokenize_fn(examples): + tokenized = tokenizer( + examples["text"], + padding="max_length", + truncation=True, + max_length=512, + return_tensors="pt" ) - return self.base_model( - input_ids=input_ids, - attention_mask=attention_mask, - labels=labels, - **kwargs + return { + "input_ids": tokenized["input_ids"].squeeze(), + "attention_mask": tokenized["attention_mask"].squeeze(), + "labels": tokenized["input_ids"].squeeze().clone(), + "source_idx": examples["source_idx"] + } + + tokenized_dataset = dataset.map(tokenize_fn, batched=True, batch_size=16) + + # Inicjalizacja modelu + config = AutoModelForCausalLM.from_pretrained(model_name).config + model = self.LegalModel(model_name, config).to(self.device) + + # Konfiguracja treningu + training_args = TrainingArguments( + output_dir="./legal_ai_model", + num_train_epochs=5, + per_device_train_batch_size=2, + gradient_accumulation_steps=4, + learning_rate=2e-5, + fp16=torch.cuda.is_available(), + logging_steps=50, + save_strategy="steps", + save_steps=500, + report_to="none", + remove_unused_columns=False ) - - def generate(self, *args, **kwargs): - return self.base_model.generate(*args, **kwargs) -class CustomDataCollator(DataCollatorForLanguageModeling): - def torch_call(self, examples): - # Przetwórz podstawowe pola - input_ids = torch.stack([torch.tensor(ex["input_ids"]) for ex in examples]) - attention_mask = torch.stack([torch.tensor(ex["attention_mask"]) for ex in examples]) - labels = torch.stack([torch.tensor(ex["labels"]) for ex in examples]) + # Customowy Trainer + class LegalTrainer(Trainer): + def compute_loss(self, model, inputs, return_outputs=False): + outputs = model(**inputs) + loss = outputs.loss + + # Confidence loss + target_conf = (inputs["source_idx"] != -1).float() + conf_loss = nn.BCELoss()(outputs.confidence.squeeze(), target_conf) + + total_loss = loss + 0.7*conf_loss + return (total_loss, outputs) if return_outputs else total_loss + + # Trening + trainer = LegalTrainer( + model=model, + args=training_args, + train_dataset=tokenized_dataset, + data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) + ) + + print("Rozpoczęcie treningu...") + trainer.train() - batch = { - "input_ids": input_ids, - "attention_mask": attention_mask, - "labels": labels - } + # Zapisz model + model.save_pretrained("./trained_legal_ai") + tokenizer.save_pretrained("./trained_legal_ai") + with open("./trained_legal_ai/source_mapper.json", "w") as f: + json.dump(source_mapper.idx_to_source, f) + + print("Trening zakończony i model zapisany!") + + def generate_response(self, prompt, confidence_threshold=0.65): + # Ładowanie modelu + model = self.LegalModel.from_pretrained("./trained_legal_ai", + config=AutoModelForCausalLM.from_pretrained("crumb/nano-mistral").config) + tokenizer = AutoTokenizer.from_pretrained("./trained_legal_ai") + model.to(self.device) - # Dodaj source_idx jeśli istnieje - if "source_idx" in examples[0]: - source_idx = torch.stack([torch.tensor(ex["source_idx"]) for ex in examples]) - batch["source_idx"] = source_idx - - return batch + # Ładowanie mapowania źródeł + with open("./trained_legal_ai/source_mapper.json", "r") as f: + source_mapper = json.load(f) -def main(): - source_mapper = SourceMapper() - model_name = "crumb/nano-mistral" - tokenizer = AutoTokenizer.from_pretrained(model_name) - tokenizer.pad_token = tokenizer.eos_token - - # Przygotowanie danych - catalog_path = "file_catalog.json" - data = prepare_dataset("files", catalog_path, source_mapper) - - if not data: - print("\nBrak danych do treningu!") - return - - #dataset = Dataset.from_list(data) - dataset = Dataset.from_dict({k: [d[k] for d in data] for k in data[0]}) - - - def tokenize_function(examples): - tokenized = tokenizer( - examples["text"], - truncation=True, - padding="max_length", + # Przygotowanie wejścia + inputs = tokenizer( + f"[PROMPT] {prompt} [RESPONSE]", + return_tensors="pt", max_length=512, - return_tensors="pt" - ) - return { - "input_ids": tokenized["input_ids"].squeeze(), - "attention_mask": tokenized["attention_mask"].squeeze(), - "labels": tokenized["input_ids"].squeeze().clone(), - "source_idx": examples["source_idx"] # Dodano bez konwersji do tensora - } + truncation=True + ).to(self.device) - tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16) + # Generacja + with torch.no_grad(): + outputs = model.generate( + input_ids=inputs.input_ids, + attention_mask=inputs.attention_mask, + max_length=512, + do_sample=True, + temperature=0.7, + top_k=50, + pad_token_id=tokenizer.eos_token_id, + output_scores=True, + return_dict_in_generate=True + ) - model = CustomModel(model_name, AutoModelForCausalLM.from_pretrained(model_name).config) - model.source_mapper = source_mapper - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - model.to(device) + # Analiza wyników + full_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) + confidence = torch.sigmoid(outputs.scores[-1][:, tokenizer.eos_token_id]).item() + + # Ekstrakcja i weryfikacja źródeł + citations = list(set(re.findall(r"Art\.\s*\d+[a-z]*", full_text))) + verified = [c for c in citations if any(c in s for s in source_mapper.values())] - training_args = TrainingArguments( - output_dir="./results", - num_train_epochs=3, - per_device_train_batch_size=2, - gradient_accumulation_steps=4, - learning_rate=2e-5, - fp16=torch.cuda.is_available(), - logging_steps=10, - save_strategy="steps", - save_steps=1000, - report_to="none", - remove_unused_columns=False - ) - - trainer = Trainer( - model=model, - args=training_args, - train_dataset=tokenized_dataset, - data_collator=CustomDataCollator(tokenizer=tokenizer, mlm=False) - ) - - print("\nRozpoczęcie treningu...") - trainer.train() + if confidence < confidence_threshold or not verified: + return "Nie mogę udzielić jednoznacznej odpowiedzi na podstawie dostępnych danych." + else: + return f"{full_text}\n\nPotwierdzone źródła: {', '.join(verified)}" if __name__ == "__main__": - main() \ No newline at end of file + legal_ai = LegalAITrainer() + + # Etap 1: Trening + legal_ai.train( + model_name="crumb/nano-mistral", + data_dir="./legal_docs", + catalog_path="./catalog.json" + ) + + # Etap 2: Testowanie + test_prompt = "Ile dni urlopu przysługuje po 5 latach pracy w pełnym wymiarze?" + print(legal_ai.generate_response(test_prompt)) \ No newline at end of file diff --git a/files/kodekspracy.txt b/legal_docs/kodekspracy.txt similarity index 100% rename from files/kodekspracy.txt rename to legal_docs/kodekspracy.txt diff --git a/files/urlopproporcjonalny.txt b/legal_docs/urlopproporcjonalny.txt similarity index 100% rename from files/urlopproporcjonalny.txt rename to legal_docs/urlopproporcjonalny.txt diff --git a/files/ustawaopanstwowejinspekcjipracy.pdf b/legal_docs/ustawaopanstwowejinspekcjipracy.pdf similarity index 100% rename from files/ustawaopanstwowejinspekcjipracy.pdf rename to legal_docs/ustawaopanstwowejinspekcjipracy.pdf