diff --git a/herbert.py b/herbert.py index 3242cae..f15f81d 100644 --- a/herbert.py +++ b/herbert.py @@ -6,28 +6,21 @@ import faiss import numpy as np from sentence_transformers import SentenceTransformer from datasets import Dataset -from peft import LoraConfig, get_peft_model -from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling +from peft import LoraConfig, get_peft_model, PeftModel +from transformers import (AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, + DataCollatorForLanguageModeling, LlamaTokenizer, LlamaForCausalLM) +import bitsandbytes as bnb # 1️⃣ Inicjalizacja modelu do embeddingów embed_model = SentenceTransformer("all-MiniLM-L6-v2") -# 2️⃣ Dodanie dokumentów i embeddingów +# 2️⃣ Wczytanie dokumentów i embeddingów def read_documents_from_file(file_path): with open(file_path, 'r', encoding='utf-8') as file: content = file.read() articles = content.split('\n\n') - documents = [] - for article in articles: - if article.strip().startswith('Art.'): - documents.append(article.strip()) - return documents -#documents = [ -# "Jak założyć firmę w Polsce?", -# "Jak rozliczyć podatek VAT?", -# "Procedura składania reklamacji w e-sklepie.", -# "Jakie dokumenty są potrzebne do rejestracji działalności?" -#] + return [article.strip() for article in articles if article.strip().startswith('Art.')] + file_path = './docs/kodekspracy.txt' # Zmień na właściwą ścieżkę documents = read_documents_from_file(file_path) embeddings = embed_model.encode(documents) @@ -39,41 +32,31 @@ index.add(np.array(embeddings, dtype=np.float32)) # 4️⃣ Przygotowanie danych treningowych def create_training_data(): - data = { - "text": documents, - "embedding": embeddings.tolist() - } - return Dataset.from_dict(data) + return Dataset.from_dict({"text": documents, "embedding": embeddings.tolist()}) dataset = create_training_data() - -# Podział danych na treningowe i ewaluacyjne split_dataset = dataset.train_test_split(test_size=0.25) -train_dataset = split_dataset["train"] -eval_dataset = split_dataset["test"] +train_dataset, eval_dataset = split_dataset["train"], split_dataset["test"] -# 5️⃣ Ładowanie modelu Gemma 2B -device = "cuda" if torch.cuda.is_available() else "cpu" -model_name = "mmosiolek/polpaca-lora-7b" -model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device) -tokenizer = AutoTokenizer.from_pretrained(model_name) +# 5️⃣ Ładowanie modelu bazowego i fine-tunowanego +base_model = "decapoda-research/llama-7b-hf" +finetuned_model = "mmosiolek/polpaca-lora-7b" + +tokenizer = LlamaTokenizer.from_pretrained(base_model) +tokenizer.pad_token_id = 0 +tokenizer.padding_side = "left" + +model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16).to("cuda") +model = PeftModel.from_pretrained(model, finetuned_model).to("cuda") # 6️⃣ Konfiguracja LoRA lora_config = LoraConfig( - r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" -) + r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM") model = get_peft_model(model, lora_config) -# 7️⃣ Tokenizacja danych -max_length = 384 - +# 7️⃣ Tokenizacja def tokenize_function(examples): - return tokenizer( - examples["text"], - padding="max_length", - truncation=True, - max_length=max_length - ) + return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=384) tokenized_train = train_dataset.map(tokenize_function, batched=True) tokenized_eval = eval_dataset.map(tokenize_function, batched=True) @@ -81,39 +64,35 @@ tokenized_eval = eval_dataset.map(tokenize_function, batched=True) # 8️⃣ Parametry treningu training_args = TrainingArguments( output_dir="./results", - eval_strategy="steps", # Ewaluacja co określoną liczbę kroków - eval_steps=500, # Ewaluacja co 500 kroków - save_strategy="steps", # Zapis modelu co określoną liczbę kroków - save_steps=500, # Zapis modelu co 500 kroków + evaluation_strategy="steps", + eval_steps=500, + save_strategy="steps", + save_steps=500, learning_rate=1e-5, per_device_train_batch_size=2, per_device_eval_batch_size=2, num_train_epochs=16, weight_decay=0.01, - load_best_model_at_end=True, # Wczytaj najlepszy model na końcu - metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu - greater_is_better=False, # Niższy loss = lepszy model + load_best_model_at_end=True, + metric_for_best_model="loss", + greater_is_better=False, ) # 9️⃣ Data Collator -data_collator = DataCollatorForLanguageModeling( - tokenizer=tokenizer, - mlm=False -) +data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) -# 🔟 Trening modelu +# 🔟 Trening trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, - eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny + eval_dataset=tokenized_eval, data_collator=data_collator, ) - trainer.train() -# 1️⃣1️⃣ Zapis modelu -model.save_pretrained("./models/herbert") -tokenizer.save_pretrained("./models/herbert") +# 1️⃣1️⃣ Zapis modelu lokalnie +model.save_pretrained("./models/finetuned_llama") +tokenizer.save_pretrained("./models/finetuned_llama") print("✅ Model został wytrenowany i zapisany!") \ No newline at end of file