diff --git a/hft.py b/hft.py index 52d6fa4..29d5605 100644 --- a/hft.py +++ b/hft.py @@ -1,7 +1,7 @@ import os import torch import torch.nn as nn -from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, GenerationMixin +from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer from datasets import Dataset from PIL import Image import re @@ -107,13 +107,15 @@ def tokenize_function(examples): return tokenized def custom_collate_fn(batch): - input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch]).cpu() - attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch]).cpu() - labels = torch.stack([torch.tensor(b["labels"]) for b in batch]).cpu() - source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long).cpu() + input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch]) + attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch]) + labels = torch.stack([torch.tensor(b["labels"]) for b in batch]) + + source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long) + #print("source_idx shape:", source_idx.shape) # Debugowanie return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx} -class CustomModel(nn.Module, GenerationMixin): +class CustomModel(nn.Module): def __init__(self, model_name, config): super().__init__() self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config) @@ -122,11 +124,11 @@ class CustomModel(nn.Module, GenerationMixin): embedding_dim=config.hidden_size, padding_idx=-1 ) - self.config = config - self.device = next(self.base_model.parameters()).device def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs): if source_idx is not None: + #print("Max source_idx:", torch.max(source_idx)) + #print("Num embeddings:", self.source_embedding.num_embeddings) source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1) source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1) hidden_states = self.base_model.get_input_embeddings()(input_ids) + source_embeds @@ -136,16 +138,8 @@ class CustomModel(nn.Module, GenerationMixin): return outputs - def prepare_inputs_for_generation(self, input_ids, **kwargs): - return self.base_model.prepare_inputs_for_generation(input_ids, **kwargs) - - def _reorder_cache(self, past, beam_idx): - return self.base_model._reorder_cache(past, beam_idx) - class CustomTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False, **kwargs): - device = next(model.parameters()).device - inputs = {k: v.to(device) for k, v in inputs.items()} labels = inputs.pop("labels") source_idx = inputs.pop("source_idx", None) outputs = model(**inputs, labels=labels, source_idx=source_idx) @@ -166,9 +160,9 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8) # Inicjalizacja modelu config = AutoModelForCausalLM.from_pretrained(model_name).config +#print("Vocabulary size:", config.vocab_size) model = CustomModel(model_name, config) -device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -model = model.to(device) +model.to("cpu") # Zmienione na CPU dla debugowania # Konfiguracja treningu training_args = TrainingArguments( @@ -177,13 +171,13 @@ training_args = TrainingArguments( per_device_train_batch_size=2, gradient_accumulation_steps=4, learning_rate=2e-5, - fp16=torch.cuda.is_available(), + fp16=False, # Wyłączone dla CPU logging_steps=1, logging_dir="./logs", save_strategy="steps", save_steps=1000, logging_strategy="no", - report_to="none" + report_to="none", ) # Trening @@ -197,10 +191,9 @@ trainer.train() # Funkcja generująca odpowiedź def generate_answer(question, model, tokenizer, source_mapper, max_length=200): - device = next(model.parameters()).device - inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512).to(device) + inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512) - outputs = model.generate( + outputs = model.base_model.generate( **inputs, max_length=max_length, num_return_sequences=1, @@ -212,12 +205,26 @@ def generate_answer(question, model, tokenizer, source_mapper, max_length=200): # Pobierz źródło z ostatniego tokena last_token_id = outputs.sequences[0][-1].item() - source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie - source = source_mapper.get_source(source_idx) + source_idx = model.source_embeddi - return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}" +# Utwórz katalog do zapisu modelu +save_directory = "./trained_model/ably.do/hse" +os.makedirs(save_directory, exist_ok=True) -# Przykład użycia -question = "Ile dni urlopu przysługuje pracownikowi?" -answer = generate_answer(question, model, tokenizer, source_mapper) -print(answer) +# 1. Zapisz wagę modelu +torch.save(model.state_dict(), os.path.join(save_directory, "hse-nano-mistral.bin")) + +# 2. Zapisz tokenizer +tokenizer.save_pretrained(save_directory) + +# 3. Zapisz mapowanie źródeł +source_mapper_data = { + "source_to_idx": dict(source_mapper.source_to_idx), + "idx_to_source": source_mapper.idx_to_source +} + +with open(os.path.join(save_directory, "source_mapper.json"), 'w') as f: + json.dump(source_mapper_data, f) + +# 4. Zapisz konfigurację modelu (opcjonalnie, ale zalecane) +model.base_model.config.save_pretrained(save_directory) \ No newline at end of file