from transformers import MarianForCausalLM, MarianTokenizer, Trainer, TrainingArguments from datasets import load_dataset # Załaduj model i tokenizer model_name = "allegro/multislav-5lang" model = MarianForCausalLM.from_pretrained(model_name) tokenizer = MarianTokenizer.from_pretrained(model_name) # Załaduj dane (przykład dla tłumaczenia z języka rumuńskiego na angielski) dataset = load_dataset("wmt16", "ro-en") # Przetwórz dane do formatu odpowiedniego dla modelu def tokenize_function(examples): # Jeśli 'translation' to lista słowników, np. [{'en': 'text1', 'ro': 'text1_translated'}, ...] return tokenizer([example['en'] for example in examples['translation']], [example['ro'] for example in examples['translation']], truncation=True, padding='max_length', max_length=128) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Skonfiguruj trenera training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=4, per_device_eval_batch_size=4, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], ) # Trening modelu trainer.train()