from transformers import MarianForCausalLM, MarianTokenizer, Trainer, TrainingArguments from datasets import load_dataset # Załaduj model i tokenizer model_name = "allegro/multislav-5lang" model = MarianForCausalLM.from_pretrained(model_name) tokenizer = MarianTokenizer.from_pretrained(model_name) model.save_pretrained("./models/ably") tokenizer.save_pretrained("./models/ably") print("✅ Model został wytrenowany i zapisany!") # Załaduj dane (przykład dla tłumaczenia z języka rumuńskiego na angielski) #dataset = load_dataset("wmt16", "ro-en") #def tokenize_function(examples): # # Tokenizacja # tokenized = tokenizer([example['en'] for example in examples['translation']], # [example['ro'] for example in examples['translation']], # truncation=True, padding='max_length', max_length=128) # # Ustawienie labels # tokenized['labels'] = tokenized['input_ids'].copy() # return tokenized #tokenized_datasets = dataset.map(tokenize_function, batched=True) # Skonfiguruj trenera training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=4, per_device_eval_batch_size=4, num_train_epochs=3, weight_decay=0.01, ) #trainer = Trainer( # model=model, # args=training_args, # train_dataset=tokenized_datasets["train"], # eval_dataset=tokenized_datasets["test"], #) # Trening modelu #trainer.train()