import os os.environ["TOKENIZERS_PARALLELISM"] = "false" import torch import faiss import numpy as np from sentence_transformers import SentenceTransformer from datasets import Dataset from peft import LoraConfig, get_peft_model, PeftModel from transformers import (AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, LlamaTokenizer, LlamaForCausalLM) import bitsandbytes as bnb # 1️⃣ Inicjalizacja modelu do embeddingów embed_model = SentenceTransformer("all-MiniLM-L6-v2") # 2️⃣ Wczytanie dokumentów i embeddingów def read_documents_from_file(file_path): with open(file_path, 'r', encoding='utf-8') as file: content = file.read() articles = content.split('\n\n') return [article.strip() for article in articles if article.strip().startswith('Art.')] file_path = './docs/kodekspracy.txt' # Zmień na właściwą ścieżkę documents = read_documents_from_file(file_path) embeddings = embed_model.encode(documents) # 3️⃣ Inicjalizacja FAISS i dodanie wektorów dim = embeddings.shape[1] index = faiss.IndexFlatL2(dim) index.add(np.array(embeddings, dtype=np.float32)) # 4️⃣ Przygotowanie danych treningowych def create_training_data(): return Dataset.from_dict({"text": documents, "embedding": embeddings.tolist()}) dataset = create_training_data() split_dataset = dataset.train_test_split(test_size=0.25) train_dataset, eval_dataset = split_dataset["train"], split_dataset["test"] # 5️⃣ Ładowanie modelu bazowego i fine-tunowanego base_model = "decapoda-research/llama-7b-hf" finetuned_model = "mmosiolek/polpaca-lora-7b" tokenizer = LlamaTokenizer.from_pretrained(base_model) tokenizer.pad_token_id = 0 tokenizer.padding_side = "left" model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16).to("cuda") model = PeftModel.from_pretrained(model, finetuned_model).to("cuda") # 6️⃣ Konfiguracja LoRA lora_config = LoraConfig( r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM") model = get_peft_model(model, lora_config) # 7️⃣ Tokenizacja def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=384) tokenized_train = train_dataset.map(tokenize_function, batched=True) tokenized_eval = eval_dataset.map(tokenize_function, batched=True) # 8️⃣ Parametry treningu training_args = TrainingArguments( output_dir="./results", evaluation_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, learning_rate=1e-5, per_device_train_batch_size=2, per_device_eval_batch_size=2, num_train_epochs=16, weight_decay=0.01, load_best_model_at_end=True, metric_for_best_model="loss", greater_is_better=False, ) # 9️⃣ Data Collator data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) # 🔟 Trening trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_eval, data_collator=data_collator, ) trainer.train() # 1️⃣1️⃣ Zapis modelu lokalnie model.save_pretrained("./models/finetuned_llama") tokenizer.save_pretrained("./models/finetuned_llama") print("✅ Model został wytrenowany i zapisany!")