2025-02-25 04:03:59 -05:00
|
|
|
import os
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
2025-02-25 06:25:02 -05:00
|
|
|
from datasets import Dataset
|
2025-02-25 04:03:59 -05:00
|
|
|
from PIL import Image
|
|
|
|
|
import re
|
|
|
|
|
import pytesseract
|
|
|
|
|
import docx2txt
|
|
|
|
|
import PyPDF2
|
2025-02-25 06:21:39 -05:00
|
|
|
import json
|
2025-02-25 07:34:04 -05:00
|
|
|
from collections import defaultdict
|
2025-02-25 04:45:37 -05:00
|
|
|
from huggingface_hub import login
|
|
|
|
|
|
2025-02-25 07:46:35 -05:00
|
|
|
import torch
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
login(token="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")
|
2025-02-25 07:17:17 -05:00
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
2025-02-25 04:45:37 -05:00
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
# Nowa klasa do zarządzania źródłami
|
|
|
|
|
class SourceMapper:
|
|
|
|
|
def __init__(self):
|
|
|
|
|
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
|
|
|
|
self.idx_to_source = {}
|
|
|
|
|
|
|
|
|
|
def add_source(self, source):
|
|
|
|
|
if source and source not in self.source_to_idx:
|
|
|
|
|
idx = self.source_to_idx[source]
|
|
|
|
|
self.idx_to_source[idx] = source
|
|
|
|
|
|
|
|
|
|
def get_idx(self, source):
|
|
|
|
|
return self.source_to_idx[source] if source else -1
|
|
|
|
|
|
|
|
|
|
def get_source(self, idx):
|
|
|
|
|
return self.idx_to_source.get(idx, "Unknown")
|
|
|
|
|
|
2025-02-25 04:03:59 -05:00
|
|
|
def load_file_catalog(catalog_path):
|
|
|
|
|
with open(catalog_path, 'r', encoding='utf-8') as file:
|
|
|
|
|
return json.load(file)
|
|
|
|
|
|
|
|
|
|
def identify_legal_document(filename, file_catalog):
|
2025-02-25 07:34:04 -05:00
|
|
|
return file_catalog.get(filename, "Opracowanie własne")
|
2025-02-25 04:03:59 -05:00
|
|
|
|
|
|
|
|
def extract_text_from_file(file_path):
|
|
|
|
|
_, ext = os.path.splitext(file_path)
|
|
|
|
|
ext = ext.lower()
|
|
|
|
|
|
|
|
|
|
if ext in ['.txt', '.md']:
|
|
|
|
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|
|
|
|
return file.read()
|
|
|
|
|
elif ext == '.pdf':
|
|
|
|
|
text = ""
|
|
|
|
|
with open(file_path, 'rb') as file:
|
|
|
|
|
reader = PyPDF2.PdfReader(file)
|
|
|
|
|
for page in reader.pages:
|
|
|
|
|
text += page.extract_text()
|
|
|
|
|
return text
|
|
|
|
|
elif ext in ['.doc', '.docx']:
|
|
|
|
|
return docx2txt.process(file_path)
|
|
|
|
|
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
|
|
|
|
return pytesseract.image_to_string(Image.open(file_path))
|
|
|
|
|
else:
|
|
|
|
|
return ""
|
|
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
def prepare_dataset(directory, catalog_path, source_mapper):
|
2025-02-25 04:03:59 -05:00
|
|
|
file_catalog = load_file_catalog(catalog_path)
|
|
|
|
|
data = []
|
2025-02-25 07:34:04 -05:00
|
|
|
|
2025-02-25 04:03:59 -05:00
|
|
|
for root, _, files in os.walk(directory):
|
|
|
|
|
for file in files:
|
|
|
|
|
file_path = os.path.join(root, file)
|
|
|
|
|
text = extract_text_from_file(file_path)
|
2025-02-25 07:34:04 -05:00
|
|
|
if not text:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
doc_type = identify_legal_document(file, file_catalog)
|
|
|
|
|
if doc_type != "Opracowanie własne":
|
|
|
|
|
articles = re.split(r'(Art\.\s+\d+[\.\s])', text)
|
|
|
|
|
for i in range(1, len(articles), 2):
|
|
|
|
|
article_number = articles[i].strip()
|
|
|
|
|
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
|
|
|
|
source = f"{doc_type}, {article_number}"
|
|
|
|
|
source_mapper.add_source(source)
|
|
|
|
|
|
|
|
|
|
data.append({
|
|
|
|
|
"text": f"{article_number} {article_content}",
|
|
|
|
|
"source_idx": source_mapper.get_idx(source)
|
|
|
|
|
})
|
|
|
|
|
else:
|
|
|
|
|
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
|
|
|
|
for chunk in chunks:
|
|
|
|
|
data.append({
|
|
|
|
|
"text": chunk,
|
|
|
|
|
"source_idx": -1 # Brak źródła
|
|
|
|
|
})
|
2025-02-25 04:03:59 -05:00
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
def tokenize_function(examples):
|
2025-02-25 07:34:04 -05:00
|
|
|
tokenized = tokenizer(
|
|
|
|
|
examples["text"],
|
|
|
|
|
truncation=True,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=512,
|
|
|
|
|
return_tensors="pt"
|
|
|
|
|
)
|
|
|
|
|
tokenized["labels"] = tokenized["input_ids"].clone()
|
2025-02-25 07:42:51 -05:00
|
|
|
tokenized["source_idx"] = examples["source_idx"]
|
2025-02-25 07:34:04 -05:00
|
|
|
return tokenized
|
2025-02-25 04:03:59 -05:00
|
|
|
|
2025-02-25 07:40:23 -05:00
|
|
|
def custom_collate_fn(batch):
|
|
|
|
|
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
|
|
|
|
|
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
|
|
|
|
|
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
|
2025-02-25 07:42:51 -05:00
|
|
|
|
|
|
|
|
# Dodajemy domyślne source_idx, jeśli nie istnieje
|
|
|
|
|
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
|
2025-02-25 07:40:23 -05:00
|
|
|
|
|
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
|
|
|
|
|
2025-02-25 04:03:59 -05:00
|
|
|
class CustomModel(AutoModelForCausalLM):
|
|
|
|
|
def __init__(self, config):
|
|
|
|
|
super().__init__(config)
|
2025-02-25 07:34:04 -05:00
|
|
|
self.source_embedding = nn.Embedding(
|
|
|
|
|
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
|
|
|
|
|
embedding_dim=config.hidden_size,
|
|
|
|
|
padding_idx=-1
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
|
|
|
|
outputs = super().forward(
|
|
|
|
|
input_ids=input_ids,
|
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
labels=labels,
|
|
|
|
|
**kwargs
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if source_idx is not None:
|
|
|
|
|
# Dodajemy embedding źródła do hidden states
|
|
|
|
|
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
|
|
|
|
outputs.logits += source_embeds
|
|
|
|
|
|
2025-02-25 04:03:59 -05:00
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
class CustomTrainer(Trainer):
|
2025-02-25 07:34:04 -05:00
|
|
|
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
2025-02-25 04:03:59 -05:00
|
|
|
labels = inputs.pop("labels")
|
2025-02-25 07:34:04 -05:00
|
|
|
source_idx = inputs.pop("source_idx")
|
|
|
|
|
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
|
|
|
|
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
2025-02-25 04:03:59 -05:00
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
# Inicjalizacja komponentów
|
|
|
|
|
source_mapper = SourceMapper()
|
2025-02-25 04:40:49 -05:00
|
|
|
model_name = "google/gemma-2-2b"
|
2025-02-25 04:03:59 -05:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
2025-02-25 07:34:04 -05:00
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
2025-02-25 04:03:59 -05:00
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
# Przygotowanie danych
|
2025-02-25 06:20:29 -05:00
|
|
|
catalog_path = "file_catalog.json"
|
2025-02-25 07:34:04 -05:00
|
|
|
data = prepare_dataset("files", catalog_path, source_mapper)
|
2025-02-25 06:25:02 -05:00
|
|
|
dataset = Dataset.from_list(data)
|
2025-02-25 07:34:04 -05:00
|
|
|
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
|
|
|
|
|
|
|
|
|
|
# Inicjalizacja modelu
|
|
|
|
|
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
|
|
|
|
model = CustomModel.from_pretrained(model_name, config=config)
|
2025-02-25 04:03:59 -05:00
|
|
|
|
|
|
|
|
# Konfiguracja treningu
|
|
|
|
|
training_args = TrainingArguments(
|
|
|
|
|
output_dir="./results",
|
|
|
|
|
num_train_epochs=3,
|
2025-02-25 07:34:04 -05:00
|
|
|
per_device_train_batch_size=2,
|
|
|
|
|
gradient_accumulation_steps=4,
|
|
|
|
|
learning_rate=2e-5,
|
|
|
|
|
fp16=True,
|
|
|
|
|
logging_steps=100,
|
|
|
|
|
save_strategy="steps",
|
|
|
|
|
save_steps=1000,
|
2025-02-25 07:46:35 -05:00
|
|
|
report_to="none",
|
|
|
|
|
gradient_checkpointing=True
|
2025-02-25 04:03:59 -05:00
|
|
|
)
|
|
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
# Trening
|
2025-02-25 04:03:59 -05:00
|
|
|
trainer = CustomTrainer(
|
|
|
|
|
model=model,
|
|
|
|
|
args=training_args,
|
2025-02-25 06:32:03 -05:00
|
|
|
train_dataset=tokenized_dataset,
|
2025-02-25 07:42:51 -05:00
|
|
|
data_collator=custom_collate_fn # Użyj niestandardowego collate_fn
|
2025-02-25 04:03:59 -05:00
|
|
|
)
|
|
|
|
|
trainer.train()
|
|
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
# Funkcja generująca odpowiedź
|
|
|
|
|
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
|
|
|
|
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
|
|
|
|
|
|
|
|
|
outputs = model.generate(
|
|
|
|
|
**inputs,
|
|
|
|
|
max_length=max_length,
|
|
|
|
|
num_return_sequences=1,
|
|
|
|
|
return_dict_in_generate=True,
|
|
|
|
|
output_scores=True,
|
|
|
|
|
)
|
2025-02-25 04:03:59 -05:00
|
|
|
|
|
|
|
|
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
|
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
# Pobierz źródło z ostatniego tokena
|
|
|
|
|
last_token_id = outputs.sequences[0][-1].item()
|
|
|
|
|
source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie
|
|
|
|
|
source = source_mapper.get_source(source_idx)
|
2025-02-25 04:03:59 -05:00
|
|
|
|
2025-02-25 07:34:04 -05:00
|
|
|
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
|
2025-02-25 04:03:59 -05:00
|
|
|
|
|
|
|
|
# Przykład użycia
|
|
|
|
|
question = "Ile dni urlopu przysługuje pracownikowi?"
|
2025-02-25 07:34:04 -05:00
|
|
|
answer = generate_answer(question, model, tokenizer, source_mapper)
|
2025-02-25 04:03:59 -05:00
|
|
|
print(answer)
|