tmp allegro
This commit is contained in:
parent
cd535b4fe3
commit
029662e9d1
125
allegro.py
125
allegro.py
|
|
@ -1,122 +1,37 @@
|
|||
import os
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
from transformers import MarianForCausalLM, MarianTokenizer, Trainer, TrainingArguments
|
||||
from datasets import load_dataset
|
||||
|
||||
from weaviate.connect import ConnectionParams
|
||||
import weaviate
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from datasets import Dataset
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, MarianForCausalLM, MarianTokenizer
|
||||
|
||||
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
|
||||
# 1️⃣ Połączenie z Weaviate
|
||||
client = weaviate.WeaviateClient(
|
||||
connection_params=ConnectionParams.from_params(
|
||||
http_host="weaviate",
|
||||
http_port=8080,
|
||||
http_secure=False,
|
||||
grpc_host="weaviate",
|
||||
grpc_port=50051,
|
||||
grpc_secure=False,
|
||||
)
|
||||
)
|
||||
client.connect()
|
||||
|
||||
collection = client.collections.get("Document")
|
||||
|
||||
# 2️⃣ Pobranie dokumentów z Weaviate
|
||||
def fetch_documents():
|
||||
response = collection.query.fetch_objects()
|
||||
documents = []
|
||||
for o in response.objects:
|
||||
file_name = o.properties.get("fileName", "unknown_file")
|
||||
content = o.properties.get("content", "")
|
||||
if content:
|
||||
documents.append(f"fileName: {file_name}, content: {content}")
|
||||
print(f"fileName: {file_name}")
|
||||
return documents
|
||||
#return documents
|
||||
|
||||
documents = fetch_documents()
|
||||
|
||||
embeddings = embed_model.encode(documents)
|
||||
|
||||
dim = embeddings.shape[1]
|
||||
#index = faiss.IndexFlatL2(dim)
|
||||
#index.add(np.array(embeddings, dtype=np.float32))
|
||||
|
||||
def create_training_data():
|
||||
data = {
|
||||
"text": documents,
|
||||
"embedding": embeddings.tolist()
|
||||
}
|
||||
return Dataset.from_dict(data)
|
||||
|
||||
dataset = create_training_data()
|
||||
|
||||
split_dataset = dataset.train_test_split(test_size=0.25)
|
||||
train_dataset = split_dataset["train"]
|
||||
eval_dataset = split_dataset["test"]
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
# Załaduj model i tokenizer
|
||||
model_name = "allegro/multislav-5lang"
|
||||
model = MarianForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
||||
tokenizer = MarianForCausalLM.from_pretrained(model_name)
|
||||
model = MarianForCausalLM.from_pretrained(model_name)
|
||||
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
||||
|
||||
lora_config = LoraConfig(
|
||||
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
||||
)
|
||||
model = get_peft_model(model, lora_config)
|
||||
|
||||
max_length = 384
|
||||
# Załaduj dane (przykład dla tłumaczenia z języka rumuńskiego na angielski)
|
||||
dataset = load_dataset("wmt16", "ro-en")
|
||||
|
||||
# Przetwórz dane do formatu odpowiedniego dla modelu
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(
|
||||
examples["text"],
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_length
|
||||
)
|
||||
return tokenizer(examples['translation'], truncation=True, padding='max_length', max_length=128)
|
||||
|
||||
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
||||
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
||||
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
||||
|
||||
# Skonfiguruj trenera
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
|
||||
eval_steps=500, # Ewaluacja co 500 kroków
|
||||
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
|
||||
save_steps=500, # Zapis modelu co 500 kroków
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=2,
|
||||
per_device_eval_batch_size=2,
|
||||
num_train_epochs=16,
|
||||
evaluation_strategy="epoch",
|
||||
learning_rate=5e-5,
|
||||
per_device_train_batch_size=4,
|
||||
per_device_eval_batch_size=4,
|
||||
num_train_epochs=3,
|
||||
weight_decay=0.01,
|
||||
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
|
||||
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
|
||||
greater_is_better=False, # Niższy loss = lepszy model
|
||||
)
|
||||
|
||||
data_collator = DataCollatorForLanguageModeling(
|
||||
tokenizer=tokenizer,
|
||||
mlm=False
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_train,
|
||||
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
|
||||
data_collator=data_collator,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["test"],
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
|
||||
model.save_pretrained("./trained_model/gemma")
|
||||
tokenizer.save_pretrained("./trained_model/gemma")
|
||||
|
||||
print("✅ Model został wytrenowany i zapisany!")
|
||||
# Trening modelu
|
||||
trainer.train()
|
||||
Loading…
Reference in New Issue