tmp allegro

This commit is contained in:
l.gabrysiak 2025-02-28 21:41:23 +01:00
parent cd535b4fe3
commit 029662e9d1
1 changed files with 20 additions and 105 deletions

View File

@ -1,122 +1,37 @@
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import MarianForCausalLM, MarianTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from weaviate.connect import ConnectionParams
import weaviate
import torch
import numpy as np
from sentence_transformers import SentenceTransformer
from datasets import Dataset
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, MarianForCausalLM, MarianTokenizer
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
# 1⃣ Połączenie z Weaviate
client = weaviate.WeaviateClient(
connection_params=ConnectionParams.from_params(
http_host="weaviate",
http_port=8080,
http_secure=False,
grpc_host="weaviate",
grpc_port=50051,
grpc_secure=False,
)
)
client.connect()
collection = client.collections.get("Document")
# 2⃣ Pobranie dokumentów z Weaviate
def fetch_documents():
response = collection.query.fetch_objects()
documents = []
for o in response.objects:
file_name = o.properties.get("fileName", "unknown_file")
content = o.properties.get("content", "")
if content:
documents.append(f"fileName: {file_name}, content: {content}")
print(f"fileName: {file_name}")
return documents
#return documents
documents = fetch_documents()
embeddings = embed_model.encode(documents)
dim = embeddings.shape[1]
#index = faiss.IndexFlatL2(dim)
#index.add(np.array(embeddings, dtype=np.float32))
def create_training_data():
data = {
"text": documents,
"embedding": embeddings.tolist()
}
return Dataset.from_dict(data)
dataset = create_training_data()
split_dataset = dataset.train_test_split(test_size=0.25)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
device = "cuda" if torch.cuda.is_available() else "cpu"
# Załaduj model i tokenizer
model_name = "allegro/multislav-5lang"
model = MarianForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
tokenizer = MarianForCausalLM.from_pretrained(model_name)
model = MarianForCausalLM.from_pretrained(model_name)
tokenizer = MarianTokenizer.from_pretrained(model_name)
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
max_length = 384
# Załaduj dane (przykład dla tłumaczenia z języka rumuńskiego na angielski)
dataset = load_dataset("wmt16", "ro-en")
# Przetwórz dane do formatu odpowiedniego dla modelu
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length
)
return tokenizer(examples['translation'], truncation=True, padding='max_length', max_length=128)
tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Skonfiguruj trenera
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
eval_steps=500, # Ewaluacja co 500 kroków
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
save_steps=500, # Zapis modelu co 500 kroków
learning_rate=1e-5,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=16,
evaluation_strategy="epoch",
learning_rate=5e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=3,
weight_decay=0.01,
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
greater_is_better=False, # Niższy loss = lepszy model
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
data_collator=data_collator,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
)
trainer.train()
model.save_pretrained("./trained_model/gemma")
tokenizer.save_pretrained("./trained_model/gemma")
print("✅ Model został wytrenowany i zapisany!")
# Trening modelu
trainer.train()