This commit is contained in:
l.gabrysiak 2025-02-25 20:09:36 +01:00
parent 2cceeb31c8
commit 02aa12d24e
1 changed files with 57 additions and 110 deletions

161
hft.py
View File

@ -110,16 +110,13 @@ def custom_collate_fn(batch):
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
#print("source_idx shape:", source_idx.shape) # Debugowanie
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
# Zmodyfikowana klasa CustomModel
class CustomModel(AutoModelForCausalLM): # 🔵 Zmiana dziedziczenia
class CustomModel(nn.Module):
def __init__(self, model_name, config):
super().__init__(config) # 🔵 Inicjalizacja klasy bazowej
self.model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
super().__init__()
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(
num_embeddings=1000,
embedding_dim=config.hidden_size,
@ -130,21 +127,24 @@ class CustomModel(AutoModelForCausalLM): # 🔵 Zmiana dziedziczenia
if source_idx is not None:
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1)
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
inputs_embeds = self.model.get_input_embeddings()(input_ids) + source_embeds
return self.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
return self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
outputs = self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
else:
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
return outputs
# 🔵 Dodanie metody generate
def generate(self, *args, **kwargs):
return self.model.generate(*args, **kwargs)
return self.base_model.generate(*args, **kwargs)
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels")
source_idx = inputs.pop("source_idx", None)
outputs = model(**inputs, labels=labels, source_idx=source_idx)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
outputs = model(input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
labels=labels,
source_idx=source_idx)
return (outputs.loss, outputs) if return_outputs else outputs.loss
# Inicjalizacja komponentów
source_mapper = SourceMapper()
@ -160,9 +160,9 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
# Inicjalizacja modelu
config = AutoModelForCausalLM.from_pretrained(model_name).config
#print("Vocabulary size:", config.vocab_size)
model = CustomModel(model_name, config)
#model.to("cpu") # Zmienione na CPU dla debugowania
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Konfiguracja treningu
training_args = TrainingArguments(
@ -171,13 +171,12 @@ training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=False, # Wyłączone dla CPU
fp16=torch.cuda.is_available(),
logging_steps=1,
logging_dir="./logs",
save_strategy="steps",
save_steps=1000,
logging_strategy="no",
report_to="none",
report_to="none"
)
# Trening
@ -189,91 +188,9 @@ trainer = CustomTrainer(
)
trainer.train()
# Utwórz katalog do zapisu modelu
save_directory = "./trained_model/ably.do/hse"
os.makedirs(save_directory, exist_ok=True)
# 1. Zapisz wagę modelu
torch.save(model.state_dict(), os.path.join(save_directory, "hse-nano-mistral.bin"))
# 2. Zapisz tokenizer
tokenizer.save_pretrained(save_directory)
# 3. Zapisz mapowanie źródeł
source_mapper_data = {
"source_to_idx": dict(source_mapper.source_to_idx),
"idx_to_source": source_mapper.idx_to_source
}
with open(os.path.join(save_directory, "source_mapper.json"), 'w') as f:
json.dump(source_mapper_data, f)
# 4. Zapisz konfigurację modelu (opcjonalnie, ale zalecane)
model.base_model.config.save_pretrained(save_directory)
# Funkcja generująca odpowiedź
# Funkcja testująca
def generate_answer_with_source(question, model, tokenizer, source_mapper, max_length=200):
device = next(model.parameters()).device
inputs = tokenizer(
question,
return_tensors="pt",
truncation=True,
max_length=512
).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True,
temperature=0.7,
top_p=0.9,
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
# Ekstrakcja informacji o źródłach
article_matches = re.finditer(r'Art\.\s+\d+', answer)
sources = set()
for match in article_matches:
article_ref = match.group(0).strip()
for idx, source in source_mapper.idx_to_source.items():
if article_ref in source:
sources.add(source)
break
return {
"question": question,
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"],
"num_tokens": len(outputs.sequences[0])
}
# Przykładowe testy
test_cases = [
"Jaki jest wymiar urlopu wypoczynkowego?",
"Jakie są zasady bezpieczeństwa na budowie?",
"Wyjaśnij procedurę zwolnienia grupowego",
"Co reguluje ustawa o ochronie danych osobowych?",
"Jakie dokumenty są potrzebne do zawarcia umowy o pracę?"
]
print("\n\n🔴 🔴 🔴 ROZPOCZĘCIE TESTOWANIA MODELU 🔴 🔴 🔴")
for case in test_cases:
result = generate_answer_with_source(case, model, tokenizer, source_mapper)
print(f"\n🔷 Pytanie: {result['question']}")
print(f"🔷 Odpowiedź ({result['num_tokens']} tokenów):")
print(result['answer'])
print(f"🔷 Źródła: {', '.join(result['sources'])}")
print("-"*80)
# Funkcja generująca odpowiedź
def generate_answer(question, max_length=200):
model.eval()
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
@ -281,12 +198,42 @@ def generate_answer(question, max_length=200):
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return answer
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Utwórz katalog do zapisu modelu
save_directory = "./trained_model/ably.do/hse"
# Wyszukiwanie źródeł
sources = set()
for idx in source_mapper.idx_to_source:
if source_mapper.idx_to_source[idx] in answer:
sources.add(source_mapper.idx_to_source[idx])
return {
"question": question,
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"]
}
# Testowanie
test_questions = [
"Jaki jest wymiar urlopu wypoczynkowego?",
"Jakie są zasady bezpieczeństwa na budowie?",
"Wyjaśnij procedurę zwolnienia grupowego"
]
print("\n=== TEST MODELU ===")
for question in test_questions:
result = generate_answer_with_source(question, model, tokenizer, source_mapper)
print(f"\nPytanie: {result['question']}")
print(f"Odpowiedź: {result['answer']}")
print(f"Źródła: {', '.join(result['sources'])}")
print("="*80)
# Zapis modelu
save_directory = "./trained_model"
os.makedirs(save_directory, exist_ok=True)
torch.save(model.state_dict(), os.path.join(save_directory, "model.bin"))
tokenizer.save_pretrained(save_directory)