mod gpt
This commit is contained in:
parent
ffe1bf5eab
commit
0b9bb7a371
44
gpt.py
44
gpt.py
|
|
@ -1,4 +1,5 @@
|
|||
import os
|
||||
import re
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||
from datasets import Dataset
|
||||
|
|
@ -7,12 +8,29 @@ from datasets import Dataset
|
|||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
MODEL_NAME = "gpt2"
|
||||
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
||||
TEXT_FILE_PATH = "scieżka/do/pliku_z_kodeksem.txt" # Zmień na właściwą ścieżkę
|
||||
|
||||
def prepare_simple_dataset():
|
||||
return [
|
||||
{"text": "[CITATION_START] Kodeks Pracy, Art. 1 [CITATION_END] Tekst artykułu..."},
|
||||
{"text": "[CITATION_START] Kodeks Pracy, Art. 2 [CITATION_END] Inny tekst..."}
|
||||
]
|
||||
def prepare_dataset_from_file(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
text = f.read()
|
||||
|
||||
# Wydziel artykuły za pomocą wyrażenia regularnego
|
||||
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z', text, flags=re.DOTALL)
|
||||
|
||||
formatted_articles = []
|
||||
for article in articles:
|
||||
# Usuń zbędne białe znaki
|
||||
article = ' '.join(article.strip().split())
|
||||
|
||||
# Wydziel numer artykułu
|
||||
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.\s*(.*)', article, re.DOTALL)
|
||||
if art_match:
|
||||
art_number = art_match.group(1)
|
||||
art_text = art_match.group(2)
|
||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
|
||||
formatted_articles.append({"text": formatted})
|
||||
|
||||
return formatted_articles
|
||||
|
||||
def main():
|
||||
# Inicjalizacja tokenizera
|
||||
|
|
@ -21,16 +39,16 @@ def main():
|
|||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Przygotowanie danych
|
||||
data = prepare_simple_dataset()
|
||||
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
||||
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
||||
|
||||
# Tokenizacja z prawidłowymi etykietami
|
||||
# Tokenizacja
|
||||
def tokenize_function(examples):
|
||||
tokenized = tokenizer(
|
||||
examples["text"],
|
||||
truncation=True,
|
||||
padding="max_length",
|
||||
max_length=128,
|
||||
max_length=256, # Zwiększono dla dłuższych artykułów
|
||||
return_tensors="pt"
|
||||
)
|
||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
||||
|
|
@ -50,11 +68,12 @@ def main():
|
|||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=1,
|
||||
num_train_epochs=3, # Zwiększono liczbę epok
|
||||
per_device_train_batch_size=2,
|
||||
remove_unused_columns=True,
|
||||
logging_steps=1,
|
||||
report_to="none"
|
||||
learning_rate=5e-5,
|
||||
logging_steps=10,
|
||||
report_to="none",
|
||||
save_strategy="no"
|
||||
)
|
||||
|
||||
# Trainer
|
||||
|
|
@ -67,6 +86,7 @@ def main():
|
|||
|
||||
print("Rozpoczęcie treningu...")
|
||||
trainer.train()
|
||||
trainer.save_model("./trained_model")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue