mod gpt
This commit is contained in:
parent
ffe1bf5eab
commit
0b9bb7a371
44
gpt.py
44
gpt.py
|
|
@ -1,4 +1,5 @@
|
||||||
import os
|
import os
|
||||||
|
import re
|
||||||
import torch
|
import torch
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||||
from datasets import Dataset
|
from datasets import Dataset
|
||||||
|
|
@ -7,12 +8,29 @@ from datasets import Dataset
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
MODEL_NAME = "gpt2"
|
MODEL_NAME = "gpt2"
|
||||||
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
||||||
|
TEXT_FILE_PATH = "scieżka/do/pliku_z_kodeksem.txt" # Zmień na właściwą ścieżkę
|
||||||
|
|
||||||
def prepare_simple_dataset():
|
def prepare_dataset_from_file(file_path):
|
||||||
return [
|
with open(file_path, 'r', encoding='utf-8') as f:
|
||||||
{"text": "[CITATION_START] Kodeks Pracy, Art. 1 [CITATION_END] Tekst artykułu..."},
|
text = f.read()
|
||||||
{"text": "[CITATION_START] Kodeks Pracy, Art. 2 [CITATION_END] Inny tekst..."}
|
|
||||||
]
|
# Wydziel artykuły za pomocą wyrażenia regularnego
|
||||||
|
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z', text, flags=re.DOTALL)
|
||||||
|
|
||||||
|
formatted_articles = []
|
||||||
|
for article in articles:
|
||||||
|
# Usuń zbędne białe znaki
|
||||||
|
article = ' '.join(article.strip().split())
|
||||||
|
|
||||||
|
# Wydziel numer artykułu
|
||||||
|
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.\s*(.*)', article, re.DOTALL)
|
||||||
|
if art_match:
|
||||||
|
art_number = art_match.group(1)
|
||||||
|
art_text = art_match.group(2)
|
||||||
|
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
|
||||||
|
formatted_articles.append({"text": formatted})
|
||||||
|
|
||||||
|
return formatted_articles
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# Inicjalizacja tokenizera
|
# Inicjalizacja tokenizera
|
||||||
|
|
@ -21,16 +39,16 @@ def main():
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
# Przygotowanie danych
|
# Przygotowanie danych
|
||||||
data = prepare_simple_dataset()
|
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
||||||
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
||||||
|
|
||||||
# Tokenizacja z prawidłowymi etykietami
|
# Tokenizacja
|
||||||
def tokenize_function(examples):
|
def tokenize_function(examples):
|
||||||
tokenized = tokenizer(
|
tokenized = tokenizer(
|
||||||
examples["text"],
|
examples["text"],
|
||||||
truncation=True,
|
truncation=True,
|
||||||
padding="max_length",
|
padding="max_length",
|
||||||
max_length=128,
|
max_length=256, # Zwiększono dla dłuższych artykułów
|
||||||
return_tensors="pt"
|
return_tensors="pt"
|
||||||
)
|
)
|
||||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
tokenized["labels"] = tokenized["input_ids"].clone()
|
||||||
|
|
@ -50,11 +68,12 @@ def main():
|
||||||
# Konfiguracja treningu
|
# Konfiguracja treningu
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
num_train_epochs=1,
|
num_train_epochs=3, # Zwiększono liczbę epok
|
||||||
per_device_train_batch_size=2,
|
per_device_train_batch_size=2,
|
||||||
remove_unused_columns=True,
|
learning_rate=5e-5,
|
||||||
logging_steps=1,
|
logging_steps=10,
|
||||||
report_to="none"
|
report_to="none",
|
||||||
|
save_strategy="no"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Trainer
|
# Trainer
|
||||||
|
|
@ -67,6 +86,7 @@ def main():
|
||||||
|
|
||||||
print("Rozpoczęcie treningu...")
|
print("Rozpoczęcie treningu...")
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
trainer.save_model("./trained_model")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
Loading…
Reference in New Issue