init new branch
This commit is contained in:
parent
481cae2a61
commit
10f40c54ee
|
|
@ -5,7 +5,7 @@ FROM --platform=linux/amd64 python:3.9-slim
|
|||
WORKDIR /app
|
||||
|
||||
# Zainstaluj git
|
||||
RUN apt-get update && apt-get install -y git nano wget curl iputils-ping
|
||||
RUN apt-get update && apt-get install -y git nano wget curl iputils-ping
|
||||
|
||||
# Skopiuj pliki wymagań (jeśli istnieją) i zainstaluj zależności
|
||||
COPY requirements.txt .
|
||||
|
|
|
|||
|
|
@ -1,8 +1,2 @@
|
|||
#!/bin/bash
|
||||
git config --global credential.helper store
|
||||
git config --global user.name ${GIT_USERNAME}
|
||||
git config --global user.email ${GIT_EMAIL}
|
||||
echo "https://${GIT_USERNAME}:${GIT_TOKEN}@${GIT_HOST}" > ~/.git-credentials
|
||||
cd /home
|
||||
git clone --single-branch --branch ${GIT_BRANCH} https://repo.pokash.pl/POKASH.PL/ably.do.git
|
||||
python /app/monitoring.py
|
||||
python /app/ollama_service.py
|
||||
225
monitoring.py
225
monitoring.py
|
|
@ -1,225 +0,0 @@
|
|||
import os
|
||||
import time
|
||||
import subprocess
|
||||
import threading
|
||||
import weaviate
|
||||
from weaviate.connect import ConnectionParams
|
||||
from weaviate.collections import Collection
|
||||
from weaviate.classes.config import Configure, Property, DataType
|
||||
from weaviate.collections.classes.filters import Filter
|
||||
import pytesseract
|
||||
from PIL import Image
|
||||
from docx import Document
|
||||
from pypdf import PdfReader
|
||||
import textract
|
||||
from watchdog.observers import Observer
|
||||
from watchdog.events import FileSystemEventHandler
|
||||
#from flask import Flask, request, jsonify, cli
|
||||
from fastapi import FastAPI, Request, HTTPException
|
||||
import uvicorn
|
||||
import hmac
|
||||
import hashlib
|
||||
|
||||
# Konfiguracja
|
||||
REPO_PATH = "/home/ably.do/docs"
|
||||
WEBHOOK_SECRET = "twoj_tajny_klucz"
|
||||
WEBHOOK_PORT = 5000
|
||||
WEAVIATE_URL = "http://weaviate:8080"
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
client = weaviate.WeaviateClient(
|
||||
connection_params=ConnectionParams.from_params(
|
||||
http_host="weaviate",
|
||||
http_port=8080,
|
||||
http_secure=False,
|
||||
grpc_host="weaviate",
|
||||
grpc_port=50051,
|
||||
grpc_secure=False,
|
||||
)
|
||||
)
|
||||
|
||||
def read_text_file(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
return file.read()
|
||||
|
||||
def read_docx(file_path):
|
||||
doc = Document(file_path)
|
||||
return ' '.join([paragraph.text for paragraph in doc.paragraphs])
|
||||
|
||||
def read_pdf(file_path):
|
||||
reader = PdfReader(file_path)
|
||||
return ' '.join([page.extract_text() for page in reader.pages])
|
||||
|
||||
def read_image(file_path):
|
||||
return pytesseract.image_to_string(Image.open(file_path))
|
||||
|
||||
def read_file(file_path):
|
||||
_, ext = os.path.splitext(file_path.lower())
|
||||
if ext in ['.txt', '.md']:
|
||||
return read_text_file(file_path)
|
||||
elif ext == '.docx':
|
||||
return read_docx(file_path)
|
||||
elif ext == '.pdf':
|
||||
return read_pdf(file_path)
|
||||
elif ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
|
||||
return read_image(file_path)
|
||||
elif ext in ['.doc', '.rtf']:
|
||||
return textract.process(file_path).decode('utf-8')
|
||||
else:
|
||||
return None
|
||||
|
||||
def generate_content_hash(content):
|
||||
return hashlib.sha256(content.encode('utf-8')).hexdigest()
|
||||
|
||||
def add_to_weaviate(file_name, content, content_hash):
|
||||
try:
|
||||
collection = client.collections.get("Document")
|
||||
|
||||
# Poprawne użycie klasy Filter
|
||||
filters = Filter.by_property("fileName").equal(file_name)
|
||||
|
||||
# Sprawdzenie, czy dokument już istnieje
|
||||
existing_docs = collection.query.fetch_objects(filters=filters)
|
||||
|
||||
if existing_docs.objects:
|
||||
print(f"Dokument {file_name} już istnieje w bazie.")
|
||||
return
|
||||
|
||||
# Dodanie nowego dokumentu
|
||||
collection.data.insert(
|
||||
properties={
|
||||
"fileName": file_name,
|
||||
"content": content,
|
||||
"contentHash": content_hash
|
||||
}
|
||||
)
|
||||
print(f"Dodano dokument {file_name} do Weaviate.")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Błąd podczas dodawania {file_name} do Weaviate: {e}")
|
||||
|
||||
def process_file(file_path):
|
||||
if not os.path.exists(file_path):
|
||||
print(f"Plik nie istnieje: {file_path}")
|
||||
return
|
||||
|
||||
try:
|
||||
content = read_file(file_path)
|
||||
if content:
|
||||
file_name = os.path.basename(file_path)
|
||||
content_hash = generate_content_hash(content)
|
||||
add_to_weaviate(file_name, content, content_hash)
|
||||
else:
|
||||
print(f"Plik jest pusty lub nie można go odczytać: {file_path}")
|
||||
except Exception as e:
|
||||
print(f"Błąd podczas przetwarzania pliku {file_path}: {str(e)}")
|
||||
|
||||
class RepoHandler(FileSystemEventHandler):
|
||||
def on_any_event(self, event):
|
||||
if not event.is_directory:
|
||||
print(f"Wykryto zmianę: {event.src_path}")
|
||||
self.pull_changes()
|
||||
process_file(event.src_path)
|
||||
|
||||
def pull_changes(self):
|
||||
try:
|
||||
subprocess.run(["git", "pull"], check=True, cwd=REPO_PATH)
|
||||
print("Zmiany pobrane z Gitea")
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"Błąd podczas pobierania zmian: {e}")
|
||||
|
||||
def start_file_monitor():
|
||||
print(f"Rozpoczeto monitoring folderu")
|
||||
event_handler = RepoHandler()
|
||||
observer = Observer()
|
||||
observer.schedule(event_handler, REPO_PATH, recursive=True)
|
||||
observer.start()
|
||||
try:
|
||||
while True:
|
||||
time.sleep(1)
|
||||
except KeyboardInterrupt:
|
||||
observer.stop()
|
||||
observer.join()
|
||||
|
||||
@app.post("/webhook")
|
||||
async def webhook(request: Request):
|
||||
signature = request.headers.get("X-Gitea-Signature")
|
||||
if not signature:
|
||||
raise HTTPException(status_code=400, detail="No signature")
|
||||
|
||||
payload = await request.body()
|
||||
computed_signature = hmac.new(WEBHOOK_SECRET.encode(), payload, hashlib.sha256).hexdigest()
|
||||
|
||||
if hmac.compare_digest(signature, computed_signature):
|
||||
print("Otrzymano ważny webhook z Gitea")
|
||||
RepoHandler().pull_changes()
|
||||
for root, dirs, files in os.walk(REPO_PATH):
|
||||
for file in files:
|
||||
process_file(os.path.join(root, file))
|
||||
return {"message": "Zmiany pobrane i przetworzone pomyślnie"}
|
||||
else:
|
||||
raise HTTPException(status_code=401, detail="Invalid signature")
|
||||
|
||||
def load_all_documents():
|
||||
print("Wczytywanie wszystkich dokumentów z katalogu...")
|
||||
for root, dirs, files in os.walk(REPO_PATH):
|
||||
for file in files:
|
||||
process_file(os.path.join(root, file))
|
||||
print("Zakończono wczytywanie dokumentów.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
client.connect()
|
||||
try:
|
||||
collection_name = "Document"
|
||||
# Sprawdzenie, czy kolekcja istnieje i czy należy ją usunąć
|
||||
if client.collections.exists(collection_name):
|
||||
print(f"Usuwanie istniejącej kolekcji '{collection_name}' (CLEAR_COLLECTION=true)...")
|
||||
client.collections.delete(collection_name)
|
||||
print(f"Kolekcja '{collection_name}' została usunięta.")
|
||||
else:
|
||||
print(f"Kolekcja '{collection_name}' nie istnieje.")
|
||||
|
||||
# Tworzenie kolekcji od nowa, jeśli została usunięta lub nie istniała
|
||||
if not client.collections.exists(collection_name):
|
||||
print(f"Tworzenie nowej kolekcji '{collection_name}'...")
|
||||
client.collections.create(
|
||||
name=collection_name,
|
||||
properties=[
|
||||
Property(name="content", data_type=DataType.TEXT),
|
||||
Property(name="fileName", data_type=DataType.TEXT),
|
||||
Property(name="contentHash", data_type=DataType.TEXT) # Nowe pole
|
||||
],
|
||||
vectorizer_config=Configure.Vectorizer.text2vec_transformers()
|
||||
)
|
||||
print(f"Kolekcja '{collection_name}' została utworzona.")
|
||||
|
||||
# Wczytanie dokumentów po utworzeniu nowej kolekcji
|
||||
print("Wczytywanie dokumentów do nowej kolekcji...")
|
||||
load_all_documents()
|
||||
print("Wszystkie dokumenty zostały wgrane.")
|
||||
|
||||
else:
|
||||
print("Kolekcja już istnieje. Pominięto jej ponowne tworzenie.")
|
||||
|
||||
# Sprawdzenie, czy kolekcja jest pusta i ewentualne wczytanie dokumentów
|
||||
collection = client.collections.get(collection_name)
|
||||
if collection.aggregate.over_all(total_count=True).total_count == 0:
|
||||
print("Kolekcja jest pusta. Wczytywanie dokumentów...")
|
||||
load_all_documents()
|
||||
print("Wszystkie dokumenty zostały wgrane do istniejącej kolekcji.")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Wystąpił błąd podczas operacji na kolekcji '{collection_name}': {e}")
|
||||
|
||||
print(client.collections.list_all())
|
||||
|
||||
# Uruchom monitorowanie plików w osobnym wątku
|
||||
monitor_thread = threading.Thread(target=start_file_monitor)
|
||||
monitor_thread.start()
|
||||
|
||||
# Uruchom serwer Flask dla webhooka
|
||||
try:
|
||||
uvicorn.run(app, host="0.0.0.0", port=WEBHOOK_PORT)
|
||||
finally:
|
||||
client.close()
|
||||
|
|
@ -0,0 +1,180 @@
|
|||
from fastapi import FastAPI, HTTPException
|
||||
from pydantic import BaseModel
|
||||
import ollama
|
||||
import weaviate
|
||||
from weaviate.connect import ConnectionParams
|
||||
from weaviate.collections.classes.filters import Filter
|
||||
import re
|
||||
import uvicorn
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
OLLAMA_BASE_URL = "http://ollama:11434"
|
||||
WEAVIATE_URL = "http://weaviate:8080"
|
||||
|
||||
# Inicjalizacja klientów
|
||||
ollama_client = ollama.Client(host=OLLAMA_BASE_URL)
|
||||
weaviate_client = weaviate.WeaviateClient(
|
||||
connection_params=ConnectionParams.from_params(
|
||||
http_host="weaviate",
|
||||
http_port=8080,
|
||||
http_secure=False,
|
||||
grpc_host="weaviate",
|
||||
grpc_port=50051,
|
||||
grpc_secure=False,
|
||||
)
|
||||
)
|
||||
weaviate_client.connect()
|
||||
# Pobierz kolekcję
|
||||
collection = weaviate_client.collections.get("Document")
|
||||
|
||||
prompt = """
|
||||
Jesteś precyzyjnym narzędziem do generowania słów kluczowych z zakresu BHP i prawa pracy. Twoje zadanie to podanie WYŁĄCZNIE najistotniejszych słów do wyszukiwania w bazie dokumentów prawnych.
|
||||
|
||||
Ścisłe zasady:
|
||||
1. Jeśli zapytanie dotyczy konkretnego artykułu:
|
||||
- Podaj TYLKO numer artykułu i nazwę kodeksu (np. "Art. 154, Kodeks pracy").
|
||||
- NIE dodawaj żadnych innych słów.
|
||||
2. Jeśli zapytanie nie dotyczy konkretnego artykułu:
|
||||
- Podaj maksymalnie 3 najbardziej specyficzne terminy związane z zapytaniem.
|
||||
- Unikaj ogólnych słów jak "praca", "pracownik", "pracodawca", chyba że są częścią specjalistycznego terminu.
|
||||
3. Używaj wyłącznie terminów, które z pewnością występują w dokumentach prawnych lub specjalistycznych opracowaniach.
|
||||
4. NIE dodawaj własnych interpretacji ani rozszerzeń zapytania.
|
||||
|
||||
Odpowiedz TYLKO listą słów kluczowych oddzielonych przecinkami, bez żadnych dodatkowych wyjaśnień czy komentarzy.
|
||||
|
||||
Zapytanie: '{query}'
|
||||
"""
|
||||
|
||||
def analyze_query(query):
|
||||
analysis = ollama_client.chat(
|
||||
model="gemma2:2b",
|
||||
messages=[{"role": "user", "content": prompt.format(query=query)}]
|
||||
)
|
||||
keywords = [word.strip() for word in analysis['message']['content'].split(',') if word.strip()]
|
||||
print("Słowa kluczowe:", keywords)
|
||||
return keywords
|
||||
|
||||
def extract_relevant_fragment(content, query, context_size=200):
|
||||
article_match = re.match(r'Art\.\s*(\d+)', query)
|
||||
if article_match:
|
||||
article_number = article_match.group(1)
|
||||
article_pattern = rf"Art\.\s*{article_number}\..*?(?=Art\.\s*\d+\.|\Z)"
|
||||
match = re.search(article_pattern, content, re.DOTALL)
|
||||
if match:
|
||||
return match.group(0).strip()
|
||||
|
||||
index = content.lower().find(query.lower())
|
||||
if index != -1:
|
||||
start = max(0, index - context_size)
|
||||
end = min(len(content), index + len(query) + context_size)
|
||||
return f"...{content[start:end]}..."
|
||||
return content[:400] + "..."
|
||||
|
||||
def expand_query(keywords):
|
||||
expansions = {}
|
||||
expanded_terms = keywords.copy()
|
||||
for keyword in keywords:
|
||||
expanded_terms.extend(expansions.get(keyword.lower(), []))
|
||||
return " ".join(set(expanded_terms))
|
||||
|
||||
def extract_relevant_fragment(content, query, context_size=200):
|
||||
article_pattern = r"Art\.\s*154\..*?(?=Art\.\s*\d+\.|\Z)"
|
||||
match = re.search(article_pattern, content, re.DOTALL)
|
||||
if match:
|
||||
return match.group(0).strip()
|
||||
|
||||
index = content.lower().find(query.lower())
|
||||
if index != -1:
|
||||
start = max(0, index - context_size)
|
||||
end = min(len(content), index + len(query) + context_size)
|
||||
return f"...{content[start:end]}..."
|
||||
return content[:400] + "..."
|
||||
|
||||
def hybrid_search(keywords, limit=5, alpha=0.5):
|
||||
if isinstance(keywords, str):
|
||||
keywords = [keywords]
|
||||
|
||||
all_results = []
|
||||
for keyword in keywords:
|
||||
print(f"\nWyszukiwanie hybrydowe dla słowa kluczowego: '{keyword}'")
|
||||
response = collection.query.hybrid(
|
||||
query=keyword,
|
||||
alpha=alpha,
|
||||
limit=limit * 2
|
||||
)
|
||||
|
||||
for obj in response.objects:
|
||||
relevant_fragment = extract_relevant_fragment(obj.properties['content'], keyword)
|
||||
if keyword.lower() in relevant_fragment.lower():
|
||||
result = {
|
||||
"uuid": obj.uuid,
|
||||
"relevant_fragment": relevant_fragment,
|
||||
"file_name": obj.properties['fileName'],
|
||||
"keyword": keyword
|
||||
}
|
||||
if result not in all_results:
|
||||
all_results.append(result)
|
||||
print(f"UUID: {obj.uuid}")
|
||||
print(f"Relewantny fragment:\n{relevant_fragment}")
|
||||
print(f"Nazwa pliku: {obj.properties['fileName']}")
|
||||
print("---")
|
||||
|
||||
if len(all_results) >= limit:
|
||||
break
|
||||
|
||||
if len(all_results) >= limit:
|
||||
break
|
||||
|
||||
return all_results[:limit]
|
||||
|
||||
class ChatRequest(BaseModel):
|
||||
model: str
|
||||
messages: list[dict]
|
||||
query: str
|
||||
|
||||
class ChatResponse(BaseModel):
|
||||
content: str
|
||||
weaviate_results: list
|
||||
|
||||
@app.post("/chat", response_model=ChatResponse)
|
||||
async def chat_endpoint(request: ChatRequest):
|
||||
try:
|
||||
keywords = analyze_query(request.query)
|
||||
weaviate_results = hybrid_search(keywords)
|
||||
|
||||
if not weaviate_results:
|
||||
response = ollama_client.chat(
|
||||
model=request.model,
|
||||
messages=[{"role": "user", "content": f"Nie znalazłem informacji na temat: {request.query}. Proszę poinformuj użytkownika, że nie masz wystarczającej wiedzy, aby udzielić jednoznacznej odpowiedzi."}]
|
||||
)
|
||||
else:
|
||||
context = "Znalezione informacje:\n"
|
||||
for item in weaviate_results:
|
||||
context += f"Źródło: {item['file_name']}\nFragment: {item['relevant_fragment']}\n\n"
|
||||
|
||||
response = ollama_client.chat(
|
||||
model=request.model,
|
||||
messages=[
|
||||
{"role": "system", "content": context},
|
||||
{"role": "user", "content": f"Na podstawie powyższych informacji, odpowiedz na pytanie: {request.query}. Odwołaj się do konkretnych artykułów lub zacytuj fragmenty źródeł."}
|
||||
]
|
||||
)
|
||||
|
||||
return ChatResponse(
|
||||
content=response['message']['content'],
|
||||
weaviate_results=weaviate_results
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get("/models")
|
||||
async def list_models():
|
||||
try:
|
||||
models = ollama_client.list()
|
||||
return {"models": [model['name'] for model in models['models']]}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
||||
|
|
@ -1,10 +1,4 @@
|
|||
watchdog
|
||||
Flask
|
||||
weaviate-client
|
||||
python-docx
|
||||
pytesseract
|
||||
textract
|
||||
pillow
|
||||
pypdf
|
||||
uvicorn
|
||||
FastAPI
|
||||
fastapi
|
||||
uvicorn
|
||||
ollama
|
||||
weaviate-client
|
||||
Loading…
Reference in New Issue