mod gemma
This commit is contained in:
parent
310c882b1d
commit
1241d01180
33
gemma.py
33
gemma.py
|
|
@ -36,13 +36,18 @@ def create_training_data():
|
||||||
|
|
||||||
dataset = create_training_data()
|
dataset = create_training_data()
|
||||||
|
|
||||||
# 5️⃣ Ładowanie modelu Gemma 2 7B
|
# Podział danych na treningowe i ewaluacyjne
|
||||||
|
split_dataset = dataset.train_test_split(test_size=0.25)
|
||||||
|
train_dataset = split_dataset["train"]
|
||||||
|
eval_dataset = split_dataset["test"]
|
||||||
|
|
||||||
|
# 5️⃣ Ładowanie modelu Gemma 2B
|
||||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
model_name = "google/gemma-2-2b"
|
model_name = "google/gemma-2-2b"
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
# 6️⃣ Konfiguracja LoRA dla efektywnego treningu
|
# 6️⃣ Konfiguracja LoRA
|
||||||
lora_config = LoraConfig(
|
lora_config = LoraConfig(
|
||||||
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
||||||
)
|
)
|
||||||
|
|
@ -59,23 +64,24 @@ def tokenize_function(examples):
|
||||||
max_length=max_length
|
max_length=max_length
|
||||||
)
|
)
|
||||||
|
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
||||||
|
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
||||||
|
|
||||||
# 8️⃣ Parametry treningu
|
# 8️⃣ Parametry treningu
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
evaluation_strategy="steps", # Zmienione na "steps"
|
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
|
||||||
eval_steps=500, # Dodane
|
eval_steps=500, # Ewaluacja co 500 kroków
|
||||||
save_strategy="steps", # Zmienione na "steps"
|
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
|
||||||
save_steps=500, # Dodane, musi być takie samo jak eval_steps lub jego wielokrotność
|
save_steps=500, # Zapis modelu co 500 kroków
|
||||||
learning_rate=2e-5,
|
learning_rate=2e-5,
|
||||||
per_device_train_batch_size=2,
|
per_device_train_batch_size=2,
|
||||||
per_device_eval_batch_size=2,
|
per_device_eval_batch_size=2,
|
||||||
num_train_epochs=5,
|
num_train_epochs=5,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
load_best_model_at_end=True,
|
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
|
||||||
metric_for_best_model="loss", # lub inna metryka, którą chcesz optymalizować
|
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
|
||||||
greater_is_better=False, # Ustaw na True, jeśli wyższa wartość metryki jest lepsza
|
greater_is_better=False, # Niższy loss = lepszy model
|
||||||
)
|
)
|
||||||
|
|
||||||
# 9️⃣ Data Collator
|
# 9️⃣ Data Collator
|
||||||
|
|
@ -88,14 +94,15 @@ data_collator = DataCollatorForLanguageModeling(
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_dataset,
|
train_dataset=tokenized_train,
|
||||||
|
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
)
|
)
|
||||||
|
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
# 1️⃣1️⃣ Zapisanie dostrojonego modelu
|
# 1️⃣1️⃣ Zapis modelu
|
||||||
model.save_pretrained("./trained_model/gemma")
|
model.save_pretrained("./trained_model/gemma")
|
||||||
tokenizer.save_pretrained("./trained_model/gemma")
|
tokenizer.save_pretrained("./trained_model/gemma")
|
||||||
|
|
||||||
print("✅ Model został wytrenowany i zapisany!")
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
Loading…
Reference in New Issue