mod allegro
This commit is contained in:
parent
04747ff17b
commit
12cef050a2
78
allegro.py
78
allegro.py
|
|
@ -1,12 +1,17 @@
|
||||||
import os
|
import os
|
||||||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import weaviate
|
import faiss
|
||||||
import numpy as np
|
|
||||||
from datasets import Dataset
|
|
||||||
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
|
|
||||||
from weaviate.connect import ConnectionParams
|
from weaviate.connect import ConnectionParams
|
||||||
import weaviate
|
import weaviate
|
||||||
import tempfile
|
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
from datasets import Dataset
|
||||||
|
from peft import LoraConfig, get_peft_model
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||||
|
|
||||||
|
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||||
|
|
||||||
# 1️⃣ Połączenie z Weaviate
|
# 1️⃣ Połączenie z Weaviate
|
||||||
client = weaviate.WeaviateClient(
|
client = weaviate.WeaviateClient(
|
||||||
|
|
@ -38,67 +43,80 @@ def fetch_documents():
|
||||||
|
|
||||||
documents = fetch_documents()
|
documents = fetch_documents()
|
||||||
|
|
||||||
# 3️⃣ Inicjalizacja modelu
|
embeddings = embed_model.encode(documents)
|
||||||
model_name = "allegro/multislav-5lang"
|
|
||||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
||||||
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
dim = embeddings.shape[1]
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
index = faiss.IndexFlatL2(dim)
|
||||||
|
index.add(np.array(embeddings, dtype=np.float32))
|
||||||
|
|
||||||
# 4️⃣ Przygotowanie danych treningowych
|
|
||||||
def create_training_data():
|
def create_training_data():
|
||||||
return Dataset.from_dict({"text": documents})
|
data = {
|
||||||
|
"text": documents,
|
||||||
|
"embedding": embeddings.tolist()
|
||||||
|
}
|
||||||
|
return Dataset.from_dict(data)
|
||||||
|
|
||||||
dataset = create_training_data()
|
dataset = create_training_data()
|
||||||
|
|
||||||
split_dataset = dataset.train_test_split(test_size=0.25)
|
split_dataset = dataset.train_test_split(test_size=0.25)
|
||||||
train_dataset = split_dataset["train"]
|
train_dataset = split_dataset["train"]
|
||||||
eval_dataset = split_dataset["test"]
|
eval_dataset = split_dataset["test"]
|
||||||
|
|
||||||
# 5️⃣ Tokenizacja
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
model_name = "allegro/multislav-5lang"
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
||||||
|
)
|
||||||
|
model = get_peft_model(model, lora_config)
|
||||||
|
|
||||||
|
max_length = 384
|
||||||
|
|
||||||
def tokenize_function(examples):
|
def tokenize_function(examples):
|
||||||
return tokenizer(
|
return tokenizer(
|
||||||
examples["text"],
|
examples["text"],
|
||||||
padding="max_length",
|
padding="max_length",
|
||||||
truncation=True,
|
truncation=True,
|
||||||
max_length=512
|
max_length=max_length
|
||||||
)
|
)
|
||||||
|
|
||||||
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
||||||
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
||||||
|
|
||||||
# 6️⃣ Parametry treningu
|
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
evaluation_strategy="steps",
|
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
|
||||||
eval_steps=500,
|
eval_steps=500, # Ewaluacja co 500 kroków
|
||||||
save_steps=500,
|
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
|
||||||
learning_rate=2e-5,
|
save_steps=500, # Zapis modelu co 500 kroków
|
||||||
|
learning_rate=1e-5,
|
||||||
per_device_train_batch_size=2,
|
per_device_train_batch_size=2,
|
||||||
per_device_eval_batch_size=2,
|
per_device_eval_batch_size=2,
|
||||||
num_train_epochs=16,
|
num_train_epochs=16,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
save_total_limit=2,
|
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
|
||||||
load_best_model_at_end=True,
|
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
|
||||||
metric_for_best_model="loss",
|
greater_is_better=False, # Niższy loss = lepszy model
|
||||||
greater_is_better=False,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# 7️⃣ Data Collator
|
data_collator = DataCollatorForLanguageModeling(
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
|
tokenizer=tokenizer,
|
||||||
|
mlm=False
|
||||||
|
)
|
||||||
|
|
||||||
# 8️⃣ Trening
|
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_train,
|
train_dataset=tokenized_train,
|
||||||
eval_dataset=tokenized_eval,
|
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
)
|
)
|
||||||
|
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
# 9️⃣ Zapis modelu
|
model.save_pretrained("./trained_model/gemma")
|
||||||
model.save_pretrained("./models/allegro")
|
tokenizer.save_pretrained("./trained_model/gemma")
|
||||||
tokenizer.save_pretrained("./models/allegro")
|
|
||||||
|
|
||||||
print("✅ Model został wytrenowany i zapisany!")
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
Loading…
Reference in New Issue