mod allegro
This commit is contained in:
parent
1fada52aa3
commit
2bc3384235
122
allegro.py
122
allegro.py
|
|
@ -1,119 +1,9 @@
|
|||
import os
|
||||
import re
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||
from datasets import Dataset
|
||||
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
# Konfiguracja
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
MODEL_NAME = "allegro/herbert-base-cased"
|
||||
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
||||
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained("allegro/multislav-5lang")
|
||||
tokenizer = AutoTokenizer.from_pretrained("allegro/multislav-5lang")
|
||||
|
||||
def prepare_dataset_from_file(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
text = f.read()
|
||||
model.save_pretrained("./models/ably")
|
||||
tokenizer.save_pretrained("./models/ably")
|
||||
|
||||
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
|
||||
|
||||
formatted_articles = []
|
||||
for article in articles:
|
||||
article = ' '.join(article.strip().split())
|
||||
|
||||
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
|
||||
if art_match:
|
||||
art_number = art_match.group(1)
|
||||
art_text = art_match.group(2)
|
||||
|
||||
paragraphs = re.split(r'(§\s*\d+\.)', art_text)
|
||||
if len(paragraphs) > 1:
|
||||
formatted_paragraphs = []
|
||||
for i in range(1, len(paragraphs), 2):
|
||||
para_num = paragraphs[i].strip()
|
||||
para_text = paragraphs[i+1].strip()
|
||||
formatted_paragraphs.append(f"{para_num} {para_text}")
|
||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
|
||||
else:
|
||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
|
||||
|
||||
formatted_articles.append({"text": formatted})
|
||||
|
||||
questions = [
|
||||
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
|
||||
f"Co mówi artykuł {art_number} Kodeksu pracy?",
|
||||
f"Podaj treść artykułu {art_number} Kodeksu pracy."
|
||||
]
|
||||
for question in questions:
|
||||
formatted_articles.append({"text": f"{question}\n{formatted}"})
|
||||
|
||||
return formatted_articles
|
||||
|
||||
def main():
|
||||
# Inicjalizacja tokenizera
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
|
||||
|
||||
print(f"Pad token: {tokenizer.pad_token}")
|
||||
print(f"Pad token ID: {tokenizer.pad_token_id}")
|
||||
|
||||
# Przygotowanie danych
|
||||
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
||||
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
||||
|
||||
# Tokenizacja
|
||||
def tokenize_function(examples):
|
||||
tokenized = tokenizer(
|
||||
examples["text"],
|
||||
truncation=True,
|
||||
padding="max_length",
|
||||
max_length=512,
|
||||
return_tensors="pt"
|
||||
)
|
||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
||||
return tokenized
|
||||
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
|
||||
|
||||
# Model i data collator
|
||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
model.config.pad_token_id = tokenizer.pad_token_id
|
||||
|
||||
data_collator = DataCollatorForLanguageModeling(
|
||||
tokenizer=tokenizer,
|
||||
mlm=False
|
||||
)
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=32,
|
||||
per_device_train_batch_size=2,
|
||||
learning_rate=1e-5,
|
||||
logging_steps=10,
|
||||
weight_decay=0.01,
|
||||
report_to="none",
|
||||
save_strategy="steps",
|
||||
save_steps=500,
|
||||
evaluation_strategy="steps",
|
||||
eval_steps=500,
|
||||
load_best_model_at_end=True,
|
||||
)
|
||||
|
||||
# Trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
eval_dataset=tokenized_dataset,
|
||||
data_collator=data_collator
|
||||
)
|
||||
|
||||
print("Rozpoczęcie treningu...")
|
||||
trainer.train()
|
||||
trainer.save_model("./trained_model/allegro")
|
||||
tokenizer.save_pretrained("./trained_model/allegro")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
print("✅ Model został wytrenowany i zapisany!")
|
||||
Loading…
Reference in New Issue