mod allegro
This commit is contained in:
parent
1fada52aa3
commit
2bc3384235
122
allegro.py
122
allegro.py
|
|
@ -1,119 +1,9 @@
|
||||||
import os
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||||
import re
|
|
||||||
import torch
|
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
|
||||||
from datasets import Dataset
|
|
||||||
|
|
||||||
# Konfiguracja
|
model = AutoModelForSeq2SeqLM.from_pretrained("allegro/multislav-5lang")
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
tokenizer = AutoTokenizer.from_pretrained("allegro/multislav-5lang")
|
||||||
MODEL_NAME = "allegro/herbert-base-cased"
|
|
||||||
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
|
||||||
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
|
|
||||||
|
|
||||||
def prepare_dataset_from_file(file_path):
|
model.save_pretrained("./models/ably")
|
||||||
with open(file_path, 'r', encoding='utf-8') as f:
|
tokenizer.save_pretrained("./models/ably")
|
||||||
text = f.read()
|
|
||||||
|
|
||||||
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
|
|
||||||
formatted_articles = []
|
|
||||||
for article in articles:
|
|
||||||
article = ' '.join(article.strip().split())
|
|
||||||
|
|
||||||
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
|
|
||||||
if art_match:
|
|
||||||
art_number = art_match.group(1)
|
|
||||||
art_text = art_match.group(2)
|
|
||||||
|
|
||||||
paragraphs = re.split(r'(§\s*\d+\.)', art_text)
|
|
||||||
if len(paragraphs) > 1:
|
|
||||||
formatted_paragraphs = []
|
|
||||||
for i in range(1, len(paragraphs), 2):
|
|
||||||
para_num = paragraphs[i].strip()
|
|
||||||
para_text = paragraphs[i+1].strip()
|
|
||||||
formatted_paragraphs.append(f"{para_num} {para_text}")
|
|
||||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
|
|
||||||
else:
|
|
||||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
|
|
||||||
|
|
||||||
formatted_articles.append({"text": formatted})
|
|
||||||
|
|
||||||
questions = [
|
|
||||||
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
|
|
||||||
f"Co mówi artykuł {art_number} Kodeksu pracy?",
|
|
||||||
f"Podaj treść artykułu {art_number} Kodeksu pracy."
|
|
||||||
]
|
|
||||||
for question in questions:
|
|
||||||
formatted_articles.append({"text": f"{question}\n{formatted}"})
|
|
||||||
|
|
||||||
return formatted_articles
|
|
||||||
|
|
||||||
def main():
|
|
||||||
# Inicjalizacja tokenizera
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
|
|
||||||
|
|
||||||
print(f"Pad token: {tokenizer.pad_token}")
|
|
||||||
print(f"Pad token ID: {tokenizer.pad_token_id}")
|
|
||||||
|
|
||||||
# Przygotowanie danych
|
|
||||||
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
|
||||||
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
|
||||||
|
|
||||||
# Tokenizacja
|
|
||||||
def tokenize_function(examples):
|
|
||||||
tokenized = tokenizer(
|
|
||||||
examples["text"],
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length",
|
|
||||||
max_length=512,
|
|
||||||
return_tensors="pt"
|
|
||||||
)
|
|
||||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
|
||||||
return tokenized
|
|
||||||
|
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
|
|
||||||
|
|
||||||
# Model i data collator
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
model.config.pad_token_id = tokenizer.pad_token_id
|
|
||||||
|
|
||||||
data_collator = DataCollatorForLanguageModeling(
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
mlm=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# Konfiguracja treningu
|
|
||||||
training_args = TrainingArguments(
|
|
||||||
output_dir="./results",
|
|
||||||
num_train_epochs=32,
|
|
||||||
per_device_train_batch_size=2,
|
|
||||||
learning_rate=1e-5,
|
|
||||||
logging_steps=10,
|
|
||||||
weight_decay=0.01,
|
|
||||||
report_to="none",
|
|
||||||
save_strategy="steps",
|
|
||||||
save_steps=500,
|
|
||||||
evaluation_strategy="steps",
|
|
||||||
eval_steps=500,
|
|
||||||
load_best_model_at_end=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
trainer = Trainer(
|
|
||||||
model=model,
|
|
||||||
args=training_args,
|
|
||||||
train_dataset=tokenized_dataset,
|
|
||||||
eval_dataset=tokenized_dataset,
|
|
||||||
data_collator=data_collator
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Rozpoczęcie treningu...")
|
|
||||||
trainer.train()
|
|
||||||
trainer.save_model("./trained_model/allegro")
|
|
||||||
tokenizer.save_pretrained("./trained_model/allegro")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
Loading…
Reference in New Issue