Zmiana CustomModel

This commit is contained in:
l.gabrysiak 2025-02-25 20:01:50 +01:00
parent bd2eaaa775
commit 2cceeb31c8
1 changed files with 11 additions and 11 deletions

22
hft.py
View File

@ -115,10 +115,11 @@ def custom_collate_fn(batch):
#print("source_idx shape:", source_idx.shape) # Debugowanie
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
class CustomModel(nn.Module):
# Zmodyfikowana klasa CustomModel
class CustomModel(AutoModelForCausalLM): # 🔵 Zmiana dziedziczenia
def __init__(self, model_name, config):
super().__init__()
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
super().__init__(config) # 🔵 Inicjalizacja klasy bazowej
self.model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(
num_embeddings=1000,
embedding_dim=config.hidden_size,
@ -127,16 +128,15 @@ class CustomModel(nn.Module):
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None:
#print("Max source_idx:", torch.max(source_idx))
#print("Num embeddings:", self.source_embedding.num_embeddings)
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1)
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
hidden_states = self.base_model.get_input_embeddings()(input_ids) + source_embeds
outputs = self.base_model(inputs_embeds=hidden_states, attention_mask=attention_mask, labels=labels, **kwargs)
else:
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
return outputs
inputs_embeds = self.model.get_input_embeddings()(input_ids) + source_embeds
return self.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
return self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
# 🔵 Dodanie metody generate
def generate(self, *args, **kwargs):
return self.model.generate(*args, **kwargs)
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):