This commit is contained in:
l.gabrysiak 2025-02-28 19:47:09 +01:00
parent 1fada52aa3
commit 2d37e5c858
4 changed files with 151 additions and 105 deletions

30
Dockerfile Normal file
View File

@ -0,0 +1,30 @@
# Użyj oficjalnego obrazu Python jako bazowego
FROM --platform=linux/amd64 python:3.9-slim
# Ustaw katalog roboczy w kontenerze
WORKDIR /app
# Zainstaluj git
RUN apt-get update && apt-get install -y git nano wget curl iputils-ping
# Skopiuj pliki wymagań (jeśli istnieją) i zainstaluj zależności
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Skopiuj plik requirements.txt do kontenera
COPY requirements.txt .
# Zainstaluj zależności z pliku requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Zainstaluj Tesseract OCR
RUN apt-get install -y tesseract-ocr
# Skopiuj kod źródłowy do kontenera
COPY . .
COPY entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh
# Uruchom aplikację
ENTRYPOINT ["/entrypoint.sh"]

View File

@ -1,119 +1,120 @@
import os
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from datasets import Dataset
# Konfiguracja
os.environ["TOKENIZERS_PARALLELISM"] = "false"
MODEL_NAME = "allegro/herbert-base-cased"
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
def prepare_dataset_from_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
import torch
import numpy as np
from sentence_transformers import SentenceTransformer
from datasets import Dataset
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import weaviate
from weaviate.client import WeaviateClient
from weaviate.connect import ConnectionParams
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
formatted_articles = []
for article in articles:
article = ' '.join(article.strip().split())
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
if art_match:
art_number = art_match.group(1)
art_text = art_match.group(2)
paragraphs = re.split(r'\s*\d+\.)', art_text)
if len(paragraphs) > 1:
formatted_paragraphs = []
for i in range(1, len(paragraphs), 2):
para_num = paragraphs[i].strip()
para_text = paragraphs[i+1].strip()
formatted_paragraphs.append(f"{para_num} {para_text}")
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
else:
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
formatted_articles.append({"text": formatted})
questions = [
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
f"Co mówi artykuł {art_number} Kodeksu pracy?",
f"Podaj treść artykułu {art_number} Kodeksu pracy."
]
for question in questions:
formatted_articles.append({"text": f"{question}\n{formatted}"})
return formatted_articles
# 1⃣ Inicjalizacja modelu do embeddingów
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
def main():
# Inicjalizacja tokenizera
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
# 2⃣ Połączenie z Weaviate i pobranie dokumentów
client = WeaviateClient(
connection_params=ConnectionParams.from_params(
http_host="weaviate",
http_port=8080,
http_secure=False,
grpc_host="weaviate",
grpc_port=50051,
grpc_secure=False,
)
)
print(f"Pad token: {tokenizer.pad_token}")
print(f"Pad token ID: {tokenizer.pad_token_id}")
collection_name = "Document" # Zakładam, że to jest nazwa Twojej kolekcji
result = (
client.query.get(collection_name, ["content"])
.with_additional(["id"])
.do()
)
# Przygotowanie danych
data = prepare_dataset_from_file(TEXT_FILE_PATH)
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
documents = [item['content'] for item in result['data']['Get'][collection_name]]
# Tokenizacja
def tokenize_function(examples):
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512,
return_tensors="pt"
)
tokenized["labels"] = tokenized["input_ids"].clone()
return tokenized
# 3⃣ Generowanie embeddingów
embeddings = embed_model.encode(documents)
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
# 4⃣ Przygotowanie danych treningowych
def create_training_data():
data = {
"text": documents,
"embedding": embeddings.tolist()
}
return Dataset.from_dict(data)
# Model i data collator
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
dataset = create_training_data()
# Podział danych na treningowe i ewaluacyjne
split_dataset = dataset.train_test_split(test_size=0.25)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
# 5⃣ Ładowanie modelu allegro/multislav-5lang
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "allegro/multislav-5lang"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# 6⃣ Konfiguracja LoRA
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="SEQ_2_SEQ_LM"
)
model = get_peft_model(model, lora_config)
# 7⃣ Tokenizacja danych
max_length = 384
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length
)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=32,
per_device_train_batch_size=2,
learning_rate=1e-5,
logging_steps=10,
weight_decay=0.01,
report_to="none",
save_strategy="steps",
save_steps=500,
evaluation_strategy="steps",
eval_steps=500,
load_best_model_at_end=True,
)
tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
eval_dataset=tokenized_dataset,
data_collator=data_collator
)
# 8⃣ Parametry treningu
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=500,
learning_rate=1e-5,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=16,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model="loss",
greater_is_better=False,
)
print("Rozpoczęcie treningu...")
trainer.train()
trainer.save_model("./trained_model/allegro")
tokenizer.save_pretrained("./trained_model/allegro")
# 9⃣ Data Collator
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model
)
if __name__ == "__main__":
main()
# 🔟 Trening modelu
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_eval,
data_collator=data_collator,
)
trainer.train()
# 1⃣1⃣ Zapis modelu
model.save_pretrained("./models/allegro")
tokenizer.save_pretrained("./models/allegro")
print("✅ Model został wytrenowany i zapisany!")

12
entrypoint.sh Normal file
View File

@ -0,0 +1,12 @@
#!/bin/bash
git config --global credential.helper store
git config --global user.name ${GIT_USERNAME}
git config --global user.email ${GIT_EMAIL}
echo "https://${GIT_USERNAME}:${GIT_TOKEN}@${GIT_HOST}" > ~/.git-credentials
cd /home
git clone --single-branch --branch main/finetuning https://repo.pokash.pl/POKASH.PL/ably.do.git
python /app/${MODELNAME}.py
# Po zakończeniu głównego procesu, przejdź w tryb czuwania
echo "Główny proces zakończony. Przechodzę w tryb czuwania..."
tail -f /dev/null

View File

@ -5,4 +5,7 @@ Pillow>=9.4.0
pytesseract>=0.3.10
python-docx>=0.8.11
PyPDF2>=3.0.1
huggingface-hub>=0.16.4
huggingface-hub>=0.16.4
numpy
peft
weaviate-client