mod gpt
This commit is contained in:
parent
992b55745e
commit
2dd8198c3a
18
gpt.py
18
gpt.py
|
|
@ -1,6 +1,6 @@
|
|||
import os
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||
from datasets import Dataset
|
||||
|
||||
# Konfiguracja
|
||||
|
|
@ -24,21 +24,28 @@ def main():
|
|||
data = prepare_simple_dataset()
|
||||
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
||||
|
||||
# Tokenizacja
|
||||
# Tokenizacja z prawidłowymi etykietami
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(
|
||||
tokenized = tokenizer(
|
||||
examples["text"],
|
||||
truncation=True,
|
||||
padding="max_length",
|
||||
max_length=128,
|
||||
return_tensors="pt"
|
||||
)
|
||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
||||
return tokenized
|
||||
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
||||
|
||||
# Model
|
||||
# Model i data collator
|
||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
data_collator = DataCollatorForLanguageModeling(
|
||||
tokenizer=tokenizer,
|
||||
mlm=False
|
||||
)
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
|
|
@ -47,7 +54,7 @@ def main():
|
|||
per_device_train_batch_size=2,
|
||||
remove_unused_columns=True,
|
||||
logging_steps=1,
|
||||
report_to="none" # Wyłączenie raportowania
|
||||
report_to="none"
|
||||
)
|
||||
|
||||
# Trainer
|
||||
|
|
@ -55,6 +62,7 @@ def main():
|
|||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=data_collator
|
||||
)
|
||||
|
||||
print("Rozpoczęcie treningu...")
|
||||
|
|
|
|||
Loading…
Reference in New Issue