mod
This commit is contained in:
parent
c55fbe8632
commit
2f6da20984
219
hft.py
219
hft.py
|
|
@ -19,12 +19,12 @@ from transformers import (
|
|||
DataCollatorForLanguageModeling
|
||||
)
|
||||
from datasets import Dataset
|
||||
from nlpaug import Augmenter, CharAugmenter, WordAugmenter
|
||||
from nlpaug.augmenter.word import WordAugmenter
|
||||
from huggingface_hub import login
|
||||
|
||||
# Konfiguracja
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
login(token="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") # Zastąp prawdziwym tokenem
|
||||
login(token="TWÓJ_TOKEN_HF") # Zastąp swoim tokenem
|
||||
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
|
|
@ -42,10 +42,10 @@ class SourceMapper:
|
|||
def get_source(self, idx):
|
||||
return self.idx_to_source.get(idx, "Unknown")
|
||||
|
||||
class LegalDataProcessor:
|
||||
class LegalProcessor:
|
||||
def __init__(self, catalog_path):
|
||||
self.catalog = self.load_catalog(catalog_path)
|
||||
self.augmenter = WordAugmenter.AntonymAug()
|
||||
self.augmenter = self.init_augmenter()
|
||||
|
||||
def load_catalog(self, path):
|
||||
try:
|
||||
|
|
@ -54,19 +54,26 @@ class LegalDataProcessor:
|
|||
except:
|
||||
return defaultdict(str)
|
||||
|
||||
def identify_document(self, filename):
|
||||
base = os.path.splitext(filename)[0].lower()
|
||||
return self.catalog.get(base, "Opracowanie własne")
|
||||
def init_augmenter(self):
|
||||
return WordAugmenter.SynonymAug(aug_src='wordnet', aug_max=3)
|
||||
|
||||
def process_file(self, file_path):
|
||||
text = self.extract_text(file_path)
|
||||
if not text:
|
||||
return []
|
||||
|
||||
doc_type = self.identify_doc_type(file_path)
|
||||
return self.split_content(text, doc_type)
|
||||
|
||||
def extract_text(self, file_path):
|
||||
ext = os.path.splitext(file_path)[1].lower()
|
||||
try:
|
||||
if ext == '.pdf':
|
||||
return self._extract_pdf(file_path)
|
||||
return self.extract_pdf(file_path)
|
||||
elif ext in ['.doc', '.docx']:
|
||||
return docx2txt.process(file_path)
|
||||
elif ext in ['.jpg', '.jpeg', '.png']:
|
||||
return self._extract_ocr(file_path)
|
||||
return self.extract_image(file_path)
|
||||
else:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
return f.read()
|
||||
|
|
@ -74,7 +81,7 @@ class LegalDataProcessor:
|
|||
print(f"Błąd przetwarzania {file_path}: {str(e)}")
|
||||
return ""
|
||||
|
||||
def _extract_pdf(self, path):
|
||||
def extract_pdf(self, path):
|
||||
text = ""
|
||||
with open(path, 'rb') as f:
|
||||
reader = PyPDF2.PdfReader(f)
|
||||
|
|
@ -82,115 +89,138 @@ class LegalDataProcessor:
|
|||
text += page.extract_text() + "\n"
|
||||
return re.sub(r'\s+', ' ', text)
|
||||
|
||||
def _extract_ocr(self, path):
|
||||
def extract_image(self, path):
|
||||
return pytesseract.image_to_string(
|
||||
Image.open(path),
|
||||
config='--psm 4 --oem 3 -c preserve_interword_spaces=1'
|
||||
)
|
||||
|
||||
def process_legal(self, text, doc_type):
|
||||
articles = re.split(
|
||||
r'(?ix)(Art\.?\s*\d+[a-z]*|§\s*\d+|Rozdział\s+[IVXLCDM]+)\b',
|
||||
text
|
||||
)
|
||||
processed = []
|
||||
def identify_doc_type(self, file_path):
|
||||
base = os.path.splitext(os.path.basename(file_path))[0].lower()
|
||||
return self.catalog.get(base, "Custom")
|
||||
|
||||
def split_content(self, text, doc_type):
|
||||
if doc_type == "Custom":
|
||||
return self.split_custom(text)
|
||||
return self.split_legal(text, doc_type)
|
||||
|
||||
def split_legal(self, text, doc_type):
|
||||
pattern = r'(?i)(Art[\.\s]*\d+[a-z]*|§\s*\d+|Rozdział\s+[IVXLCDM]+)'
|
||||
parts = re.split(pattern, text)
|
||||
results = []
|
||||
current_header = ""
|
||||
|
||||
for item in articles:
|
||||
if item and re.match(r'(?i)(Art|§|Rozdział)', item):
|
||||
for part in parts:
|
||||
if not part:
|
||||
continue
|
||||
if re.match(pattern, part):
|
||||
if current_header:
|
||||
processed.append(current_header)
|
||||
current_header = item.strip()
|
||||
elif current_header:
|
||||
processed.append(current_header + " " + item.strip())
|
||||
results.append(current_header)
|
||||
current_header = f"[{doc_type}] {part.strip()}"
|
||||
else:
|
||||
if current_header:
|
||||
results.append(f"{current_header}: {part.strip()}")
|
||||
current_header = ""
|
||||
else:
|
||||
processed.append(item.strip())
|
||||
results.append(part.strip())
|
||||
|
||||
return [
|
||||
(f"[{doc_type}] {p}", doc_type)
|
||||
for p in processed if len(p) > 30
|
||||
]
|
||||
return [text for text in results if len(text) > 50]
|
||||
|
||||
def process_custom(self, text):
|
||||
def split_custom(self, text):
|
||||
clean_text = re.sub(r'\s+', ' ', text).strip()
|
||||
chunk_size = 384
|
||||
overlap = 128
|
||||
overlap = 64
|
||||
|
||||
chunks = [
|
||||
clean_text[i:i+chunk_size]
|
||||
for i in range(0, len(clean_text), chunk_size - overlap)
|
||||
]
|
||||
return [("[Custom] " + c, "Custom") for c in chunks if c.strip()]
|
||||
chunks = []
|
||||
start = 0
|
||||
while start < len(clean_text):
|
||||
end = start + chunk_size
|
||||
chunks.append(clean_text[start:end])
|
||||
start = end - overlap
|
||||
|
||||
class EnhancedDataCollator(DataCollatorForLanguageModeling):
|
||||
def torch_call(self, examples):
|
||||
batch = super().torch_call(examples)
|
||||
if "source_idx" in examples[0]:
|
||||
batch["source_idx"] = torch.tensor(
|
||||
[ex["source_idx"] for ex in examples],
|
||||
dtype=torch.long
|
||||
return [f"[Custom] {chunk}" for chunk in chunks if chunk.strip()]
|
||||
|
||||
class CustomModel(torch.nn.Module):
|
||||
def __init__(self, model_name):
|
||||
super().__init__()
|
||||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name)
|
||||
self.source_emb = torch.nn.Embedding(1000, self.base_model.config.hidden_size)
|
||||
|
||||
# Zamrożenie parametrów bazowych
|
||||
for param in self.base_model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# Odmrożenie ostatnich warstw
|
||||
for layer in self.base_model.transformer.h[-2:]:
|
||||
for param in layer.parameters():
|
||||
param.requires_grad = True
|
||||
|
||||
self.base_model.get_output_embeddings().requires_grad_(True)
|
||||
|
||||
def forward(self, input_ids, attention_mask, labels, source_idx):
|
||||
inputs_embeds = self.base_model.get_input_embeddings()(input_ids)
|
||||
source_emb = self.source_emb(source_idx.clamp(0, 999)).unsqueeze(1)
|
||||
inputs_embeds += source_emb
|
||||
|
||||
return self.base_model(
|
||||
inputs_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
labels=labels
|
||||
)
|
||||
return batch
|
||||
|
||||
def main():
|
||||
# Konfiguracja
|
||||
# Inicjalizacja komponentów
|
||||
source_mapper = SourceMapper()
|
||||
processor = LegalDataProcessor("file_catalog.json")
|
||||
processor = LegalProcessor("file_catalog.json")
|
||||
tokenizer = AutoTokenizer.from_pretrained("crumb/nano-mistral")
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Przygotowanie danych
|
||||
# Przetwarzanie danych
|
||||
data = []
|
||||
|
||||
def process_file(file_path):
|
||||
nonlocal data
|
||||
text = processor.extract_text(file_path)
|
||||
if not text:
|
||||
return
|
||||
|
||||
doc_type = processor.identify_document(os.path.basename(file_path))
|
||||
if doc_type != "Opracowanie własne":
|
||||
processed = processor.process_legal(text, doc_type)
|
||||
else:
|
||||
processed = processor.process_custom(text)
|
||||
|
||||
for text, source in processed:
|
||||
def process_and_augment(file_path):
|
||||
try:
|
||||
items = processor.process_file(file_path)
|
||||
for text in items:
|
||||
source = text.split("]")[0][1:]
|
||||
source_mapper.add_source(source)
|
||||
|
||||
# Oryginalny tekst
|
||||
data.append({
|
||||
"text": text,
|
||||
"source_idx": source_mapper.get_idx(source)
|
||||
})
|
||||
|
||||
# Augmentacja - 2 warianty
|
||||
for _ in range(2):
|
||||
words = text.split()
|
||||
if len(words) > 5:
|
||||
# Losowa zamiana kolejności słów
|
||||
random.shuffle(words)
|
||||
augmented = " ".join(words)
|
||||
data.append({
|
||||
"text": augmented,
|
||||
"source_idx": source_mapper.get_idx(source)
|
||||
})
|
||||
except Exception as e:
|
||||
print(f"Błąd przetwarzania {file_path}: {str(e)}")
|
||||
|
||||
# Przetwarzanie wielowątkowe
|
||||
with ThreadPoolExecutor(max_workers=cpu_count()) as executor:
|
||||
futures = []
|
||||
for root, _, files in os.walk("files"):
|
||||
for root, _, files in os.walk("files"): # Folder z danymi
|
||||
for file in files:
|
||||
futures.append(executor.submit(
|
||||
process_file,
|
||||
os.path.join(root, file)
|
||||
))
|
||||
file_path = os.path.join(root, file)
|
||||
futures.append(executor.submit(process_and_augment, file_path))
|
||||
|
||||
for future in futures:
|
||||
try:
|
||||
future.result()
|
||||
except Exception as e:
|
||||
print(f"Błąd: {str(e)}")
|
||||
|
||||
# Augmentacja
|
||||
print(f"Przed augmentacją: {len(data)} przykładów")
|
||||
augmented = []
|
||||
for item in data:
|
||||
for _ in range(2): # 2 dodatkowe warianty
|
||||
sentences = item['text'].split('. ')
|
||||
random.shuffle(sentences)
|
||||
augmented.append({
|
||||
"text": '. '.join(sentences),
|
||||
"source_idx": item["source_idx"]
|
||||
})
|
||||
data += augmented
|
||||
print(f"Po augmentacji: {len(data)} przykładów")
|
||||
print(f"\nPrzygotowano {len(data)} przykładów treningowych")
|
||||
print("Przykładowe dane:")
|
||||
for example in random.sample(data, 3):
|
||||
print(f"\nŹródło: {source_mapper.get_source(example['source_idx'])}")
|
||||
print(f"Tekst: {example['text'][:150]}...")
|
||||
|
||||
# Przygotowanie datasetu
|
||||
dataset = Dataset.from_list(data)
|
||||
|
|
@ -217,20 +247,18 @@ def main():
|
|||
num_proc=4
|
||||
)
|
||||
|
||||
# Model
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"crumb/nano-mistral",
|
||||
trust_remote_code=True
|
||||
)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
# Inicjalizacja modelu
|
||||
model = CustomModel("crumb/nano-mistral")
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
# Trening
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
output_dir="./wyniki",
|
||||
num_train_epochs=5,
|
||||
per_device_train_batch_size=2,
|
||||
gradient_accumulation_steps=8,
|
||||
learning_rate=1e-4,
|
||||
learning_rate=2e-5,
|
||||
fp16=torch.cuda.is_available(),
|
||||
logging_steps=20,
|
||||
save_strategy="epoch",
|
||||
|
|
@ -241,16 +269,17 @@ def main():
|
|||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_ds,
|
||||
data_collator=EnhancedDataCollator(tokenizer=tokenizer, mlm=False)
|
||||
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
)
|
||||
|
||||
print("Rozpoczęcie treningu...")
|
||||
# Trening
|
||||
print("\nRozpoczynanie treningu...")
|
||||
trainer.train()
|
||||
print("Trening zakończony!")
|
||||
|
||||
# Zapisz model
|
||||
model.save_pretrained("./trained_model")
|
||||
tokenizer.save_pretrained("./trained_model")
|
||||
# Zapis modelu
|
||||
model.save_pretrained("./trained_legal_model")
|
||||
tokenizer.save_pretrained("./trained_legal_model")
|
||||
print("Trening zakończony pomyślnie!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue