This commit is contained in:
l.gabrysiak 2025-02-25 17:24:26 +01:00
parent 44b4336822
commit 413e31b49f
1 changed files with 10 additions and 14 deletions

24
hft.py
View File

@ -12,9 +12,11 @@ import json
from collections import defaultdict from collections import defaultdict
from huggingface_hub import login from huggingface_hub import login
login(token="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") os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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")
class SourceMapper: class SourceMapper:
def __init__(self): def __init__(self):
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx)) self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
@ -110,7 +112,7 @@ def custom_collate_fn(batch):
labels = torch.stack([torch.tensor(b["labels"]) for b in batch]) labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long) source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
print("source_idx shape:", source_idx.shape) # Debugowanie #print("source_idx shape:", source_idx.shape) # Debugowanie
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx} return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
class CustomModel(nn.Module): class CustomModel(nn.Module):
@ -125,8 +127,10 @@ class CustomModel(nn.Module):
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs): def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None: if source_idx is not None:
print("Max source_idx:", torch.max(source_idx))
print("Num embeddings:", self.source_embedding.num_embeddings)
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1)
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1) source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
# Dodaj embeddingi źródła do wejścia modelu
hidden_states = self.base_model.get_input_embeddings()(input_ids) + source_embeds hidden_states = self.base_model.get_input_embeddings()(input_ids) + source_embeds
outputs = self.base_model(inputs_embeds=hidden_states, attention_mask=attention_mask, labels=labels, **kwargs) outputs = self.base_model(inputs_embeds=hidden_states, attention_mask=attention_mask, labels=labels, **kwargs)
else: else:
@ -158,7 +162,7 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
config = AutoModelForCausalLM.from_pretrained(model_name).config config = AutoModelForCausalLM.from_pretrained(model_name).config
print("Vocabulary size:", config.vocab_size) print("Vocabulary size:", config.vocab_size)
model = CustomModel(model_name, config) model = CustomModel(model_name, config)
model.to("cpu") model.to("cpu") # Zmienione na CPU dla debugowania
# Konfiguracja treningu # Konfiguracja treningu
training_args = TrainingArguments( training_args = TrainingArguments(
@ -167,7 +171,7 @@ training_args = TrainingArguments(
per_device_train_batch_size=2, per_device_train_batch_size=2,
gradient_accumulation_steps=4, gradient_accumulation_steps=4,
learning_rate=2e-5, learning_rate=2e-5,
fp16=True, fp16=False, # Wyłączone dla CPU
logging_steps=1, logging_steps=1,
logging_dir="./logs", logging_dir="./logs",
save_strategy="steps", save_strategy="steps",
@ -199,12 +203,4 @@ def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
# Pobierz źródło z ostatniego tokena # Pobierz źródło z ostatniego tokena
last_token_id = outputs.sequences[0][-1].item() last_token_id = outputs.sequences[0][-1].item()
source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie source_idx = model.source_embeddi
source = source_mapper.get_source(source_idx)
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
# Przykład użycia
question = "Ile dni urlopu przysługuje pracownikowi?"
answer = generate_answer(question, model, tokenizer, source_mapper)
print(answer)