mod
This commit is contained in:
parent
4be750503d
commit
4957a2898b
30
hft.py
30
hft.py
|
|
@ -103,21 +103,19 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
||||||
current_section = ""
|
current_section = ""
|
||||||
current_chapter = ""
|
current_chapter = ""
|
||||||
|
|
||||||
# Wykrywanie struktury dokumentu
|
|
||||||
structure_matches = re.finditer(
|
structure_matches = re.finditer(
|
||||||
r'(DZIAŁ [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|Rozdział|DZIAŁ|$)'
|
r'(DZIAŁ [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|Rozdział|DZIAŁ|$)'
|
||||||
r'|(Rozdział [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|DZIAŁ|$)',
|
r'|(Rozdział [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|DZIAŁ|$)',
|
||||||
text
|
text
|
||||||
)
|
)
|
||||||
for match in structure_matches:
|
for match in structure_matches:
|
||||||
if match.group(1): # DZIAŁ
|
if match.group(1):
|
||||||
current_section = f"{match.group(1)} - {match.group(2).strip()}"
|
current_section = f"{match.group(1)} - {match.group(2).strip()}"
|
||||||
current_chapter = ""
|
current_chapter = ""
|
||||||
else: # Rozdział
|
else:
|
||||||
current_chapter = f"{match.group(3)} - {match.group(4).strip()}"
|
current_chapter = f"{match.group(3)} - {match.group(4).strip()}"
|
||||||
|
|
||||||
if doc_type != "Opracowanie własne":
|
if doc_type != "Opracowanie własne":
|
||||||
# Ulepszony regex dla artykułów
|
|
||||||
articles = re.split(
|
articles = re.split(
|
||||||
r'(?i)(Art[\.\s]+\d+[a-z]*(?:[\s§\.-]\d+)*)\.?\s*',
|
r'(?i)(Art[\.\s]+\d+[a-z]*(?:[\s§\.-]\d+)*)\.?\s*',
|
||||||
text
|
text
|
||||||
|
|
@ -133,7 +131,6 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
||||||
if len(article_content) < 50:
|
if len(article_content) < 50:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Formatowanie cytowania
|
|
||||||
citation_block = (
|
citation_block = (
|
||||||
f"{CITATION_START}\n"
|
f"{CITATION_START}\n"
|
||||||
f"Dokument: {doc_type}\n"
|
f"Dokument: {doc_type}\n"
|
||||||
|
|
@ -177,15 +174,15 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
||||||
return data
|
return data
|
||||||
|
|
||||||
class CustomModel(nn.Module):
|
class CustomModel(nn.Module):
|
||||||
def __init__(self, model_name, config):
|
def __init__(self, model_name, tokenizer):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
||||||
self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1)
|
self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1)
|
||||||
|
|
||||||
# Dodatkowa inicjalizacja tokenizera
|
# Dodaj specjalne tokeny i zaktualizuj embeddings
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
tokenizer.add_special_tokens({'additional_special_tokens': [CITATION_START, CITATION_END]})
|
||||||
self.tokenizer.add_special_tokens({'additional_special_tokens': [CITATION_START, CITATION_END]})
|
self.base_model.resize_token_embeddings(len(tokenizer))
|
||||||
self.base_model.resize_token_embeddings(len(self.tokenizer))
|
|
||||||
|
|
||||||
for param in self.base_model.parameters():
|
for param in self.base_model.parameters():
|
||||||
param.requires_grad = False
|
param.requires_grad = False
|
||||||
|
|
@ -218,7 +215,7 @@ class CustomDataCollator(DataCollatorForLanguageModeling):
|
||||||
batch = super().torch_call(examples)
|
batch = super().torch_call(examples)
|
||||||
|
|
||||||
if "source_idx" in examples[0]:
|
if "source_idx" in examples[0]:
|
||||||
source_idx = torch.stack([torch.tensor(ex["source_idx"]) for ex in examples])
|
source_idx = torch.tensor([ex["source_idx"] for ex in examples])
|
||||||
batch["source_idx"] = source_idx
|
batch["source_idx"] = source_idx
|
||||||
|
|
||||||
return batch
|
return batch
|
||||||
|
|
@ -226,12 +223,11 @@ class CustomDataCollator(DataCollatorForLanguageModeling):
|
||||||
def main():
|
def main():
|
||||||
source_mapper = SourceMapper()
|
source_mapper = SourceMapper()
|
||||||
model_name = "crumb/nano-mistral"
|
model_name = "crumb/nano-mistral"
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
||||||
|
|
||||||
# Dodaj specjalne tokeny do tokenizera
|
# Inicjalizacja tokenizera
|
||||||
tokenizer.add_special_tokens({'additional_special_tokens': [CITATION_START, CITATION_END]})
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
# Przygotowanie danych
|
# Przygotowanie danych
|
||||||
catalog_path = "catalog.json"
|
catalog_path = "catalog.json"
|
||||||
data = prepare_dataset("docs", catalog_path, source_mapper)
|
data = prepare_dataset("docs", catalog_path, source_mapper)
|
||||||
|
|
@ -259,8 +255,8 @@ def main():
|
||||||
|
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)
|
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)
|
||||||
|
|
||||||
model = CustomModel(model_name, AutoModelForCausalLM.from_pretrained(model_name).config)
|
# Inicjalizacja modelu z tokenizerem
|
||||||
model.source_mapper = source_mapper
|
model = CustomModel(model_name, tokenizer)
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
model.to(device)
|
model.to(device)
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue