This commit is contained in:
l.gabrysiak 2025-02-26 00:01:18 +01:00
parent 91e490db0c
commit 4be750503d
1 changed files with 47 additions and 16 deletions

63
hft.py
View File

@ -17,6 +17,10 @@ os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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")
# Nowe tokeny specjalne
CITATION_START = "▌▌CITATION_START"
CITATION_END = "▌▌CITATION_END"
class SourceMapper:
def __init__(self):
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
@ -96,8 +100,28 @@ def prepare_dataset(directory, catalog_path, source_mapper):
doc_type = identify_legal_document(file, file_catalog)
print(f"Rozpoznany typ dokumentu: {doc_type}")
current_section = ""
current_chapter = ""
# Wykrywanie struktury dokumentu
structure_matches = re.finditer(
r'(DZIAŁ [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|Rozdział|DZIAŁ|$)'
r'|(Rozdział [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|DZIAŁ|$)',
text
)
for match in structure_matches:
if match.group(1): # DZIAŁ
current_section = f"{match.group(1)} - {match.group(2).strip()}"
current_chapter = ""
else: # Rozdział
current_chapter = f"{match.group(3)} - {match.group(4).strip()}"
if doc_type != "Opracowanie własne":
articles = re.split(r'(?i)(Art[\.\s]+\d+[\.\s]?)', text)
# Ulepszony regex dla artykułów
articles = re.split(
r'(?i)(Art[\.\s]+\d+[a-z]*(?:[\\.-]\d+)*)\.?\s*',
text
)
articles = [a.strip() for a in articles if a.strip()]
print(f"Znaleziono {len(articles)} fragmentów")
@ -109,10 +133,21 @@ def prepare_dataset(directory, catalog_path, source_mapper):
if len(article_content) < 50:
continue
# Formatowanie cytowania
citation_block = (
f"{CITATION_START}\n"
f"Dokument: {doc_type}\n"
f"Artykuł: {article_number}\n"
f"Sekcja: {current_section}\n"
f"Rozdział: {current_chapter}\n"
f"{CITATION_END}\n"
f"{article_content}"
)
source = f"{doc_type}, {article_number}"
source_mapper.add_source(source)
data.append({
"text": f"{article_number} {article_content}",
"text": citation_block,
"source_idx": source_mapper.get_idx(source)
})
else:
@ -147,6 +182,11 @@ class CustomModel(nn.Module):
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1)
# Dodatkowa inicjalizacja tokenizera
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer.add_special_tokens({'additional_special_tokens': [CITATION_START, CITATION_END]})
self.base_model.resize_token_embeddings(len(self.tokenizer))
for param in self.base_model.parameters():
param.requires_grad = False
for param in self.base_model.get_output_embeddings().parameters():
@ -175,18 +215,8 @@ class CustomModel(nn.Module):
class CustomDataCollator(DataCollatorForLanguageModeling):
def torch_call(self, examples):
# Przetwórz podstawowe pola
input_ids = torch.stack([torch.tensor(ex["input_ids"]) for ex in examples])
attention_mask = torch.stack([torch.tensor(ex["attention_mask"]) for ex in examples])
labels = torch.stack([torch.tensor(ex["labels"]) for ex in examples])
batch = super().torch_call(examples)
batch = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
# Dodaj source_idx jeśli istnieje
if "source_idx" in examples[0]:
source_idx = torch.stack([torch.tensor(ex["source_idx"]) for ex in examples])
batch["source_idx"] = source_idx
@ -197,6 +227,9 @@ def main():
source_mapper = SourceMapper()
model_name = "crumb/nano-mistral"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Dodaj specjalne tokeny do tokenizera
tokenizer.add_special_tokens({'additional_special_tokens': [CITATION_START, CITATION_END]})
tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie danych
@ -207,10 +240,8 @@ def main():
print("\nBrak danych do treningu!")
return
#dataset = Dataset.from_list(data)
dataset = Dataset.from_dict({k: [d[k] for d in data] for k in data[0]})
def tokenize_function(examples):
tokenized = tokenizer(
examples["text"],
@ -223,7 +254,7 @@ def main():
"input_ids": tokenized["input_ids"].squeeze(),
"attention_mask": tokenized["attention_mask"].squeeze(),
"labels": tokenized["input_ids"].squeeze().clone(),
"source_idx": examples["source_idx"] # Dodano bez konwersji do tensora
"source_idx": examples["source_idx"]
}
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)