This commit is contained in:
l.gabrysiak 2025-02-25 21:44:27 +01:00
parent 7e16747ff8
commit 54c224aa88
1 changed files with 117 additions and 73 deletions

190
hft.py
View File

@ -11,11 +11,12 @@ import pytesseract
from PIL import Image
from collections import defaultdict
from huggingface_hub import login
from torch.utils.data import DataLoader
# Konfiguracja
os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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")
login(token="TWÓJ_TOKEN_HF") # Zastąp swoim tokenem
class SourceMapper:
def __init__(self):
@ -97,15 +98,18 @@ def prepare_dataset(directory, catalog_path, source_mapper):
print(f"Rozpoznany typ dokumentu: {doc_type}")
if doc_type != "Opracowanie własne":
# Nowe wyrażenie regularne dla formatu "Art. XX."
articles = re.split(r'(Art\. \d+\.?)', text)
print(f"Znaleziono {len(articles)} fragmentów")
# Ulepszone wyrażenie regularne dla różnych formatów
articles = re.split(r'(?i)(Art[^\S\n]*\.?[^\S\n]*\d+[^\S\n]*\.?)', text)
articles = [a.strip() for a in articles if a.strip()]
for i in range(1, len(articles), 2):
article_number = articles[i].strip()
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
print(f"Znaleziono {len(articles)//2} artykułów")
for i in range(0, len(articles)-1, 2):
article_number = articles[i]
article_content = articles[i+1]
if not article_content:
if len(article_content) < 50:
print(f"Pominięto zbyt krótki artykuł: {article_number}")
continue
source = f"{doc_type}, {article_number}"
@ -148,13 +152,37 @@ class CustomModel(nn.Module):
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(1000, config.hidden_size, padding_idx=-1)
# Zamrożenie warstw bazowego modelu
for param in self.base_model.parameters():
param.requires_grad = False
for param in self.base_model.get_output_embeddings().parameters():
param.requires_grad = True
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None:
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(valid_indices).unsqueeze(1).expand(-1, input_ids.size(1), -1)
source_embeds = torch.nn.functional.normalize(
self.source_embedding(valid_indices),
p=2,
dim=-1
).unsqueeze(1)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
return self.base_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
**kwargs
)
return self.base_model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
**kwargs
)
def generate(self, *args, **kwargs):
return self.base_model.generate(*args, **kwargs)
@ -165,6 +193,71 @@ class CustomTrainer(Trainer):
source_idx = inputs.pop("source_idx", None)
outputs = model(**inputs, labels=labels, source_idx=source_idx)
return (outputs.loss, outputs) if return_outputs else outputs.loss
def evaluate(self):
val_questions = {
"art1": "Jakie są prawa pracownika według art. 1?",
"art2": "Kto jest pracownikiem według art. 2?",
"art3": "Jakie są obowiązki pracodawcy według art. 3?"
}
model.eval()
results = {}
for key, question in val_questions.items():
result = self.generate_answer(question)
results[key] = result
print("\nWyniki walidacji:")
for key, val in results.items():
print(f"\n{val_questions[key]}")
print(f"Odpowiedź: {val['answer'][:200]}...")
print(f"Źródła: {val['sources']}")
return {"loss": 0.0}
def generate_answer(self, question):
tokenizer = self.tokenizer
model = self.model
device = model.base_model.device
prompt = f"[PYTANIE PRAWNE] {question} [KONTEKST]"
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512
).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=150,
temperature=0.3,
top_k=50,
top_p=0.95,
repetition_penalty=1.8,
num_beams=3,
no_repeat_ngram_size=4,
early_stopping=True,
pad_token_id=tokenizer.eos_token_id
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.replace(prompt, "").strip()
sources = set()
for match in re.finditer(r'(?i)art\.?\s*\d+\.?', answer):
article_ref = match.group(0).strip().rstrip('.')
for source in self.model.source_mapper.idx_to_source.values():
if article_ref.lower() in source.lower():
sources.add(source)
return {
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"]
}
def main():
# Inicjalizacja
@ -211,20 +304,24 @@ def main():
# Model
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = CustomModel(model_name, config)
model.source_mapper = source_mapper # Dodanie mapowania źródeł do modelu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Trening
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
num_train_epochs=5,
per_device_train_batch_size=4,
gradient_accumulation_steps=2,
learning_rate=1e-5,
weight_decay=0.01,
warmup_ratio=0.1,
fp16=torch.cuda.is_available(),
logging_steps=10,
save_strategy="steps",
save_steps=500,
save_strategy="epoch",
evaluation_strategy="steps",
eval_steps=500,
report_to="none",
remove_unused_columns=False
)
@ -233,65 +330,12 @@ def main():
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=custom_collate_fn
data_collator=custom_collate_fn,
tokenizer=tokenizer
)
print("\nRozpoczęcie treningu...")
trainer.train()
# Testowanie
def generate_answer(question):
model.eval()
prompt = f"[PYTANIE PRAWNE] {question}"
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512
).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.5,
no_repeat_ngram_size=3,
pad_token_id=tokenizer.eos_token_id
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.replace(prompt, "").strip()
sources = set()
for match in re.finditer(r'(?i)art\.?\s*\d+\.?', answer):
article_ref = match.group(0).strip().rstrip('.')
for source in source_mapper.idx_to_source.values():
if article_ref.lower() in source.lower():
sources.add(source)
return {
"question": question,
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"]
}
# Testy
test_questions = [
"Jakie są prawa pracownika według art. 1?",
"Kto jest pracownikiem według art. 2?",
"Jakie są obowiązki pracodawcy według art. 3?"
]
print("\n" + "="*50 + "\nWYNIKI TESTOW\n" + "="*50)
for question in test_questions:
result = generate_answer(question)
print(f"\nPYTANIE: {result['question']}")
print(f"ODPOWIEDŹ: {result['answer'][:500]}")
print(f"ŹRÓDŁA: {', '.join(result['sources'])}")
print("-"*80)
trainer.evaluate()
if __name__ == "__main__":
main()