mod
This commit is contained in:
parent
7e16747ff8
commit
54c224aa88
190
hft.py
190
hft.py
|
|
@ -11,11 +11,12 @@ import pytesseract
|
|||
from PIL import Image
|
||||
from collections import defaultdict
|
||||
from huggingface_hub import login
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# Konfiguracja
|
||||
os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
login(token="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")
|
||||
login(token="TWÓJ_TOKEN_HF") # Zastąp swoim tokenem
|
||||
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
|
|
@ -97,15 +98,18 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
print(f"Rozpoznany typ dokumentu: {doc_type}")
|
||||
|
||||
if doc_type != "Opracowanie własne":
|
||||
# Nowe wyrażenie regularne dla formatu "Art. XX."
|
||||
articles = re.split(r'(Art\. \d+\.?)', text)
|
||||
print(f"Znaleziono {len(articles)} fragmentów")
|
||||
# Ulepszone wyrażenie regularne dla różnych formatów
|
||||
articles = re.split(r'(?i)(Art[^\S\n]*\.?[^\S\n]*\d+[^\S\n]*\.?)', text)
|
||||
articles = [a.strip() for a in articles if a.strip()]
|
||||
|
||||
for i in range(1, len(articles), 2):
|
||||
article_number = articles[i].strip()
|
||||
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
||||
print(f"Znaleziono {len(articles)//2} artykułów")
|
||||
|
||||
if not article_content:
|
||||
for i in range(0, len(articles)-1, 2):
|
||||
article_number = articles[i]
|
||||
article_content = articles[i+1]
|
||||
|
||||
if len(article_content) < 50:
|
||||
print(f"Pominięto zbyt krótki artykuł: {article_number}")
|
||||
continue
|
||||
|
||||
source = f"{doc_type}, {article_number}"
|
||||
|
|
@ -148,13 +152,37 @@ class CustomModel(nn.Module):
|
|||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
||||
self.source_embedding = nn.Embedding(1000, config.hidden_size, padding_idx=-1)
|
||||
|
||||
# Zamrożenie warstw bazowego modelu
|
||||
for param in self.base_model.parameters():
|
||||
param.requires_grad = False
|
||||
for param in self.base_model.get_output_embeddings().parameters():
|
||||
param.requires_grad = True
|
||||
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||
if source_idx is not None:
|
||||
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
|
||||
source_embeds = self.source_embedding(valid_indices).unsqueeze(1).expand(-1, input_ids.size(1), -1)
|
||||
|
||||
source_embeds = torch.nn.functional.normalize(
|
||||
self.source_embedding(valid_indices),
|
||||
p=2,
|
||||
dim=-1
|
||||
).unsqueeze(1)
|
||||
|
||||
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
|
||||
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||
|
||||
return self.base_model(
|
||||
inputs_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
labels=labels,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return self.base_model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
labels=labels,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
return self.base_model.generate(*args, **kwargs)
|
||||
|
|
@ -166,6 +194,71 @@ class CustomTrainer(Trainer):
|
|||
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
||||
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
||||
|
||||
def evaluate(self):
|
||||
val_questions = {
|
||||
"art1": "Jakie są prawa pracownika według art. 1?",
|
||||
"art2": "Kto jest pracownikiem według art. 2?",
|
||||
"art3": "Jakie są obowiązki pracodawcy według art. 3?"
|
||||
}
|
||||
|
||||
model.eval()
|
||||
results = {}
|
||||
|
||||
for key, question in val_questions.items():
|
||||
result = self.generate_answer(question)
|
||||
results[key] = result
|
||||
|
||||
print("\nWyniki walidacji:")
|
||||
for key, val in results.items():
|
||||
print(f"\n{val_questions[key]}")
|
||||
print(f"Odpowiedź: {val['answer'][:200]}...")
|
||||
print(f"Źródła: {val['sources']}")
|
||||
|
||||
return {"loss": 0.0}
|
||||
|
||||
def generate_answer(self, question):
|
||||
tokenizer = self.tokenizer
|
||||
model = self.model
|
||||
device = model.base_model.device
|
||||
|
||||
prompt = f"[PYTANIE PRAWNE] {question} [KONTEKST]"
|
||||
|
||||
inputs = tokenizer(
|
||||
prompt,
|
||||
return_tensors="pt",
|
||||
truncation=True,
|
||||
max_length=512
|
||||
).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=150,
|
||||
temperature=0.3,
|
||||
top_k=50,
|
||||
top_p=0.95,
|
||||
repetition_penalty=1.8,
|
||||
num_beams=3,
|
||||
no_repeat_ngram_size=4,
|
||||
early_stopping=True,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
|
||||
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
answer = answer.replace(prompt, "").strip()
|
||||
|
||||
sources = set()
|
||||
for match in re.finditer(r'(?i)art\.?\s*\d+\.?', answer):
|
||||
article_ref = match.group(0).strip().rstrip('.')
|
||||
for source in self.model.source_mapper.idx_to_source.values():
|
||||
if article_ref.lower() in source.lower():
|
||||
sources.add(source)
|
||||
|
||||
return {
|
||||
"answer": answer,
|
||||
"sources": list(sources) if sources else ["Opracowanie własne"]
|
||||
}
|
||||
|
||||
def main():
|
||||
# Inicjalizacja
|
||||
source_mapper = SourceMapper()
|
||||
|
|
@ -211,20 +304,24 @@ def main():
|
|||
# Model
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel(model_name, config)
|
||||
model.source_mapper = source_mapper # Dodanie mapowania źródeł do modelu
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
# Trening
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=2,
|
||||
gradient_accumulation_steps=4,
|
||||
learning_rate=2e-5,
|
||||
num_train_epochs=5,
|
||||
per_device_train_batch_size=4,
|
||||
gradient_accumulation_steps=2,
|
||||
learning_rate=1e-5,
|
||||
weight_decay=0.01,
|
||||
warmup_ratio=0.1,
|
||||
fp16=torch.cuda.is_available(),
|
||||
logging_steps=10,
|
||||
save_strategy="steps",
|
||||
save_steps=500,
|
||||
save_strategy="epoch",
|
||||
evaluation_strategy="steps",
|
||||
eval_steps=500,
|
||||
report_to="none",
|
||||
remove_unused_columns=False
|
||||
)
|
||||
|
|
@ -233,65 +330,12 @@ def main():
|
|||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=custom_collate_fn
|
||||
data_collator=custom_collate_fn,
|
||||
tokenizer=tokenizer
|
||||
)
|
||||
print("\nRozpoczęcie treningu...")
|
||||
trainer.train()
|
||||
|
||||
# Testowanie
|
||||
def generate_answer(question):
|
||||
model.eval()
|
||||
prompt = f"[PYTANIE PRAWNE] {question}"
|
||||
|
||||
inputs = tokenizer(
|
||||
prompt,
|
||||
return_tensors="pt",
|
||||
truncation=True,
|
||||
max_length=512
|
||||
).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=200,
|
||||
temperature=0.7,
|
||||
top_p=0.9,
|
||||
do_sample=True,
|
||||
repetition_penalty=1.5,
|
||||
no_repeat_ngram_size=3,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
|
||||
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
answer = answer.replace(prompt, "").strip()
|
||||
|
||||
sources = set()
|
||||
for match in re.finditer(r'(?i)art\.?\s*\d+\.?', answer):
|
||||
article_ref = match.group(0).strip().rstrip('.')
|
||||
for source in source_mapper.idx_to_source.values():
|
||||
if article_ref.lower() in source.lower():
|
||||
sources.add(source)
|
||||
|
||||
return {
|
||||
"question": question,
|
||||
"answer": answer,
|
||||
"sources": list(sources) if sources else ["Opracowanie własne"]
|
||||
}
|
||||
|
||||
# Testy
|
||||
test_questions = [
|
||||
"Jakie są prawa pracownika według art. 1?",
|
||||
"Kto jest pracownikiem według art. 2?",
|
||||
"Jakie są obowiązki pracodawcy według art. 3?"
|
||||
]
|
||||
|
||||
print("\n" + "="*50 + "\nWYNIKI TESTOW\n" + "="*50)
|
||||
for question in test_questions:
|
||||
result = generate_answer(question)
|
||||
print(f"\nPYTANIE: {result['question']}")
|
||||
print(f"ODPOWIEDŹ: {result['answer'][:500]}")
|
||||
print(f"ŹRÓDŁA: {', '.join(result['sources'])}")
|
||||
print("-"*80)
|
||||
trainer.evaluate()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue