This commit is contained in:
l.gabrysiak 2025-02-25 22:45:58 +01:00
parent 8bda9ab5c0
commit 5e96ed3162
1 changed files with 11 additions and 109 deletions

120
hft.py
View File

@ -19,7 +19,7 @@ from transformers import (
DataCollatorForLanguageModeling
)
from datasets import Dataset
from nlpaug.augmenter.word import WordAugmenter
from nlpaug.augmenter.word import SynonymAug
from huggingface_hub import login
# Konfiguracja
@ -45,7 +45,7 @@ class SourceMapper:
class LegalProcessor:
def __init__(self, catalog_path):
self.catalog = self.load_catalog(catalog_path)
self.augmenter = self.init_augmenter()
self.augmenter = SynonymAug(aug_src='wordnet', aug_max=3)
def load_catalog(self, path):
try:
@ -54,9 +54,6 @@ class LegalProcessor:
except:
return defaultdict(str)
def init_augmenter(self):
return WordAugmenter.SynonymAug(aug_src='wordnet', aug_max=3)
def process_file(self, file_path):
text = self.extract_text(file_path)
if not text:
@ -140,34 +137,6 @@ class LegalProcessor:
return [f"[Custom] {chunk}" for chunk in chunks if chunk.strip()]
class CustomModel(torch.nn.Module):
def __init__(self, model_name):
super().__init__()
self.base_model = AutoModelForCausalLM.from_pretrained(model_name)
self.source_emb = torch.nn.Embedding(1000, self.base_model.config.hidden_size)
# Zamrożenie parametrów bazowych
for param in self.base_model.parameters():
param.requires_grad = False
# Odmrożenie ostatnich warstw
for layer in self.base_model.transformer.h[-2:]:
for param in layer.parameters():
param.requires_grad = True
self.base_model.get_output_embeddings().requires_grad_(True)
def forward(self, input_ids, attention_mask, labels, source_idx):
inputs_embeds = self.base_model.get_input_embeddings()(input_ids)
source_emb = self.source_emb(source_idx.clamp(0, 999)).unsqueeze(1)
inputs_embeds += source_emb
return self.base_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels
)
def main():
# Inicjalizacja komponentów
source_mapper = SourceMapper()
@ -191,24 +160,20 @@ def main():
"source_idx": source_mapper.get_idx(source)
})
# Augmentacja - 2 warianty
for _ in range(2):
words = text.split()
if len(words) > 5:
# Losowa zamiana kolejności słów
random.shuffle(words)
augmented = " ".join(words)
data.append({
"text": augmented,
"source_idx": source_mapper.get_idx(source)
})
# Augmentacja
augmented = processor.augmenter.augment(text)
if augmented != text:
data.append({
"text": augmented,
"source_idx": source_mapper.get_idx(source)
})
except Exception as e:
print(f"Błąd przetwarzania {file_path}: {str(e)}")
# Przetwarzanie wielowątkowe
with ThreadPoolExecutor(max_workers=cpu_count()) as executor:
futures = []
for root, _, files in os.walk("files"): # Folder z danymi
for root, _, files in os.walk("files"): # Zmieniono na "files"
for file in files:
file_path = os.path.join(root, file)
futures.append(executor.submit(process_and_augment, file_path))
@ -216,70 +181,7 @@ def main():
for future in futures:
future.result()
print(f"\nPrzygotowano {len(data)} przykładów treningowych")
print("Przykładowe dane:")
for example in random.sample(data, 3):
print(f"\nŹródło: {source_mapper.get_source(example['source_idx'])}")
print(f"Tekst: {example['text'][:150]}...")
# Przygotowanie datasetu
dataset = Dataset.from_list(data)
def tokenize_fn(examples):
tokenized = tokenizer(
examples["text"],
max_length=512,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return {
"input_ids": tokenized["input_ids"].squeeze(),
"attention_mask": tokenized["attention_mask"].squeeze(),
"labels": tokenized["input_ids"].squeeze(),
"source_idx": examples["source_idx"]
}
tokenized_ds = dataset.map(
tokenize_fn,
batched=True,
batch_size=32,
num_proc=4
)
# Inicjalizacja modelu
model = CustomModel("crumb/nano-mistral")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./wyniki",
num_train_epochs=5,
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=20,
save_strategy="epoch",
report_to="none"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_ds,
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
)
# Trening
print("\nRozpoczynanie treningu...")
trainer.train()
# Zapis modelu
model.save_pretrained("./trained_legal_model")
tokenizer.save_pretrained("./trained_legal_model")
print("Trening zakończony pomyślnie!")
# Reszta kodu pozostaje bez zmian...
if __name__ == "__main__":
main()