mod herbert

This commit is contained in:
l.gabrysiak 2025-03-01 11:35:22 +01:00
parent d6e1f45686
commit 61fbc79211
1 changed files with 56 additions and 35 deletions

View File

@ -6,21 +6,28 @@ import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from datasets import Dataset
from peft import LoraConfig, get_peft_model, PeftModel
from transformers import (AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer,
DataCollatorForLanguageModeling, LlamaTokenizer, LlamaForCausalLM)
import bitsandbytes as bnb
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
# 1⃣ Inicjalizacja modelu do embeddingów
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
# 2Wczytanie dokumentów i embeddingów
# 2Dodanie dokumentów i embeddingów
def read_documents_from_file(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
articles = content.split('\n\n')
return [article.strip() for article in articles if article.strip().startswith('Art.')]
documents = []
for article in articles:
if article.strip().startswith('Art.'):
documents.append(article.strip())
return documents
#documents = [
# "Jak założyć firmę w Polsce?",
# "Jak rozliczyć podatek VAT?",
# "Procedura składania reklamacji w e-sklepie.",
# "Jakie dokumenty są potrzebne do rejestracji działalności?"
#]
file_path = './docs/kodekspracy.txt' # Zmień na właściwą ścieżkę
documents = read_documents_from_file(file_path)
embeddings = embed_model.encode(documents)
@ -32,31 +39,41 @@ index.add(np.array(embeddings, dtype=np.float32))
# 4⃣ Przygotowanie danych treningowych
def create_training_data():
return Dataset.from_dict({"text": documents, "embedding": embeddings.tolist()})
data = {
"text": documents,
"embedding": embeddings.tolist()
}
return Dataset.from_dict(data)
dataset = create_training_data()
# Podział danych na treningowe i ewaluacyjne
split_dataset = dataset.train_test_split(test_size=0.25)
train_dataset, eval_dataset = split_dataset["train"], split_dataset["test"]
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
# 5⃣ Ładowanie modelu bazowego i fine-tunowanego
base_model = "decapoda-research/llama-7b-hf"
finetuned_model = "mmosiolek/polpaca-lora-7b"
tokenizer = LlamaTokenizer.from_pretrained(base_model)
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16).to("cuda")
model = PeftModel.from_pretrained(model, finetuned_model).to("cuda")
# 5⃣ Ładowanie modelu Gemma 2B
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "Lajonbot/vicuna-7b-v1.5-PL-lora_unload"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# 6⃣ Konfiguracja LoRA
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM")
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# 7⃣ Tokenizacja
# 7⃣ Tokenizacja danych
max_length = 384
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=384)
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length
)
tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
@ -64,35 +81,39 @@ tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
# 8⃣ Parametry treningu
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=500,
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
eval_steps=500, # Ewaluacja co 500 kroków
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
save_steps=500, # Zapis modelu co 500 kroków
learning_rate=1e-5,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=16,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model="loss",
greater_is_better=False,
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
greater_is_better=False, # Niższy loss = lepszy model
)
# 9⃣ Data Collator
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# 🔟 Trening
# 🔟 Trening modelu
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_eval,
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
data_collator=data_collator,
)
trainer.train()
# 1⃣1⃣ Zapis modelu lokalnie
model.save_pretrained("./models/finetuned_llama")
tokenizer.save_pretrained("./models/finetuned_llama")
# 1⃣1⃣ Zapis modelu
model.save_pretrained("./models/herbert")
tokenizer.save_pretrained("./models/herbert")
print("✅ Model został wytrenowany i zapisany!")