mod herbert
This commit is contained in:
parent
d6e1f45686
commit
61fbc79211
91
herbert.py
91
herbert.py
|
|
@ -6,21 +6,28 @@ import faiss
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sentence_transformers import SentenceTransformer
|
from sentence_transformers import SentenceTransformer
|
||||||
from datasets import Dataset
|
from datasets import Dataset
|
||||||
from peft import LoraConfig, get_peft_model, PeftModel
|
from peft import LoraConfig, get_peft_model
|
||||||
from transformers import (AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer,
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||||
DataCollatorForLanguageModeling, LlamaTokenizer, LlamaForCausalLM)
|
|
||||||
import bitsandbytes as bnb
|
|
||||||
|
|
||||||
# 1️⃣ Inicjalizacja modelu do embeddingów
|
# 1️⃣ Inicjalizacja modelu do embeddingów
|
||||||
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||||
|
|
||||||
# 2️⃣ Wczytanie dokumentów i embeddingów
|
# 2️⃣ Dodanie dokumentów i embeddingów
|
||||||
def read_documents_from_file(file_path):
|
def read_documents_from_file(file_path):
|
||||||
with open(file_path, 'r', encoding='utf-8') as file:
|
with open(file_path, 'r', encoding='utf-8') as file:
|
||||||
content = file.read()
|
content = file.read()
|
||||||
articles = content.split('\n\n')
|
articles = content.split('\n\n')
|
||||||
return [article.strip() for article in articles if article.strip().startswith('Art.')]
|
documents = []
|
||||||
|
for article in articles:
|
||||||
|
if article.strip().startswith('Art.'):
|
||||||
|
documents.append(article.strip())
|
||||||
|
return documents
|
||||||
|
#documents = [
|
||||||
|
# "Jak założyć firmę w Polsce?",
|
||||||
|
# "Jak rozliczyć podatek VAT?",
|
||||||
|
# "Procedura składania reklamacji w e-sklepie.",
|
||||||
|
# "Jakie dokumenty są potrzebne do rejestracji działalności?"
|
||||||
|
#]
|
||||||
file_path = './docs/kodekspracy.txt' # Zmień na właściwą ścieżkę
|
file_path = './docs/kodekspracy.txt' # Zmień na właściwą ścieżkę
|
||||||
documents = read_documents_from_file(file_path)
|
documents = read_documents_from_file(file_path)
|
||||||
embeddings = embed_model.encode(documents)
|
embeddings = embed_model.encode(documents)
|
||||||
|
|
@ -32,31 +39,41 @@ index.add(np.array(embeddings, dtype=np.float32))
|
||||||
|
|
||||||
# 4️⃣ Przygotowanie danych treningowych
|
# 4️⃣ Przygotowanie danych treningowych
|
||||||
def create_training_data():
|
def create_training_data():
|
||||||
return Dataset.from_dict({"text": documents, "embedding": embeddings.tolist()})
|
data = {
|
||||||
|
"text": documents,
|
||||||
|
"embedding": embeddings.tolist()
|
||||||
|
}
|
||||||
|
return Dataset.from_dict(data)
|
||||||
|
|
||||||
dataset = create_training_data()
|
dataset = create_training_data()
|
||||||
|
|
||||||
|
# Podział danych na treningowe i ewaluacyjne
|
||||||
split_dataset = dataset.train_test_split(test_size=0.25)
|
split_dataset = dataset.train_test_split(test_size=0.25)
|
||||||
train_dataset, eval_dataset = split_dataset["train"], split_dataset["test"]
|
train_dataset = split_dataset["train"]
|
||||||
|
eval_dataset = split_dataset["test"]
|
||||||
|
|
||||||
# 5️⃣ Ładowanie modelu bazowego i fine-tunowanego
|
# 5️⃣ Ładowanie modelu Gemma 2B
|
||||||
base_model = "decapoda-research/llama-7b-hf"
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
finetuned_model = "mmosiolek/polpaca-lora-7b"
|
model_name = "Lajonbot/vicuna-7b-v1.5-PL-lora_unload"
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
tokenizer.pad_token_id = 0
|
|
||||||
tokenizer.padding_side = "left"
|
|
||||||
|
|
||||||
model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16).to("cuda")
|
|
||||||
model = PeftModel.from_pretrained(model, finetuned_model).to("cuda")
|
|
||||||
|
|
||||||
# 6️⃣ Konfiguracja LoRA
|
# 6️⃣ Konfiguracja LoRA
|
||||||
lora_config = LoraConfig(
|
lora_config = LoraConfig(
|
||||||
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM")
|
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
||||||
|
)
|
||||||
model = get_peft_model(model, lora_config)
|
model = get_peft_model(model, lora_config)
|
||||||
|
|
||||||
# 7️⃣ Tokenizacja
|
# 7️⃣ Tokenizacja danych
|
||||||
|
max_length = 384
|
||||||
|
|
||||||
def tokenize_function(examples):
|
def tokenize_function(examples):
|
||||||
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=384)
|
return tokenizer(
|
||||||
|
examples["text"],
|
||||||
|
padding="max_length",
|
||||||
|
truncation=True,
|
||||||
|
max_length=max_length
|
||||||
|
)
|
||||||
|
|
||||||
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
||||||
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
||||||
|
|
@ -64,35 +81,39 @@ tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
||||||
# 8️⃣ Parametry treningu
|
# 8️⃣ Parametry treningu
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
evaluation_strategy="steps",
|
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
|
||||||
eval_steps=500,
|
eval_steps=500, # Ewaluacja co 500 kroków
|
||||||
save_strategy="steps",
|
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
|
||||||
save_steps=500,
|
save_steps=500, # Zapis modelu co 500 kroków
|
||||||
learning_rate=1e-5,
|
learning_rate=1e-5,
|
||||||
per_device_train_batch_size=2,
|
per_device_train_batch_size=2,
|
||||||
per_device_eval_batch_size=2,
|
per_device_eval_batch_size=2,
|
||||||
num_train_epochs=16,
|
num_train_epochs=16,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
load_best_model_at_end=True,
|
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
|
||||||
metric_for_best_model="loss",
|
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
|
||||||
greater_is_better=False,
|
greater_is_better=False, # Niższy loss = lepszy model
|
||||||
)
|
)
|
||||||
|
|
||||||
# 9️⃣ Data Collator
|
# 9️⃣ Data Collator
|
||||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
data_collator = DataCollatorForLanguageModeling(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
mlm=False
|
||||||
|
)
|
||||||
|
|
||||||
# 🔟 Trening
|
# 🔟 Trening modelu
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_train,
|
train_dataset=tokenized_train,
|
||||||
eval_dataset=tokenized_eval,
|
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
)
|
)
|
||||||
|
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
# 1️⃣1️⃣ Zapis modelu lokalnie
|
# 1️⃣1️⃣ Zapis modelu
|
||||||
model.save_pretrained("./models/finetuned_llama")
|
model.save_pretrained("./models/herbert")
|
||||||
tokenizer.save_pretrained("./models/finetuned_llama")
|
tokenizer.save_pretrained("./models/herbert")
|
||||||
|
|
||||||
print("✅ Model został wytrenowany i zapisany!")
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
Loading…
Reference in New Issue