mod allegro
This commit is contained in:
parent
8e1f346f6e
commit
6a6546a03d
74
allegro.py
74
allegro.py
|
|
@ -1,16 +1,16 @@
|
||||||
import os
|
import os
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import weaviate
|
import weaviate
|
||||||
from weaviate.classes.config import Property, DataType, Configure
|
import numpy as np
|
||||||
from weaviate.classes.query import Query
|
|
||||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForSeq2Seq
|
|
||||||
from datasets import Dataset
|
from datasets import Dataset
|
||||||
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
|
||||||
|
from weaviate.classes.config import Property, DataType, Configure
|
||||||
|
from weaviate.classes.client import WeaviateClient
|
||||||
|
from weaviate.classes.config import ConnectionParams
|
||||||
|
|
||||||
# 1️⃣ Połączenie z bazą Weaviate
|
# 1️⃣ Połączenie z Weaviate
|
||||||
client = weaviate.WeaviateClient(
|
client = WeaviateClient(
|
||||||
connection_params=weaviate.ConnectionParams.from_params(
|
connection_params=ConnectionParams.from_params(
|
||||||
http_host="weaviate",
|
http_host="weaviate",
|
||||||
http_port=8080,
|
http_port=8080,
|
||||||
http_secure=False,
|
http_secure=False,
|
||||||
|
|
@ -20,44 +20,42 @@ client = weaviate.WeaviateClient(
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
# 2️⃣ Pobranie dokumentów z bazy Weaviate
|
# 2️⃣ Pobranie dokumentów z Weaviate
|
||||||
collection_name = "Documents"
|
def fetch_documents():
|
||||||
query = Query(collection_name).limit(1000)
|
query = client.query.get("Document", ["content", "fileName"]).do()
|
||||||
result = client.query.run(query)
|
|
||||||
|
|
||||||
documents = []
|
documents = []
|
||||||
file_names = []
|
for item in query["data"]["Get"]["Document"]:
|
||||||
|
file_name = item.get("fileName", "unknown_file")
|
||||||
|
content = item.get("content", "")
|
||||||
|
if content:
|
||||||
|
documents.append(f"fileName: {file_name}, content: {content}")
|
||||||
|
return documents
|
||||||
|
|
||||||
for item in result[collection_name]['objects']:
|
documents = fetch_documents()
|
||||||
documents.append(item['properties']['content'])
|
|
||||||
file_names.append(item['properties']['fileName'])
|
|
||||||
|
|
||||||
# 3️⃣ Tworzenie datasetu
|
# 3️⃣ Inicjalizacja modelu
|
||||||
training_data = {
|
model_name = "allegro/multislav-5lang"
|
||||||
"text": documents,
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
"file_name": file_names
|
|
||||||
}
|
|
||||||
dataset = Dataset.from_dict(training_data)
|
|
||||||
|
|
||||||
# Podział na zestaw treningowy i ewaluacyjny
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
|
# 4️⃣ Przygotowanie danych treningowych
|
||||||
|
def create_training_data():
|
||||||
|
return Dataset.from_dict({"text": documents})
|
||||||
|
|
||||||
|
dataset = create_training_data()
|
||||||
split_dataset = dataset.train_test_split(test_size=0.25)
|
split_dataset = dataset.train_test_split(test_size=0.25)
|
||||||
train_dataset = split_dataset["train"]
|
train_dataset = split_dataset["train"]
|
||||||
eval_dataset = split_dataset["test"]
|
eval_dataset = split_dataset["test"]
|
||||||
|
|
||||||
# 4️⃣ Ładowanie modelu Multislav
|
|
||||||
model_name = "allegro/multislav-5lang"
|
|
||||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
||||||
|
|
||||||
# 5️⃣ Tokenizacja
|
# 5️⃣ Tokenizacja
|
||||||
max_length = 512
|
|
||||||
def tokenize_function(examples):
|
def tokenize_function(examples):
|
||||||
return tokenizer(
|
return tokenizer(
|
||||||
examples["text"],
|
examples["text"],
|
||||||
padding="max_length",
|
padding="max_length",
|
||||||
truncation=True,
|
truncation=True,
|
||||||
max_length=max_length
|
max_length=512
|
||||||
)
|
)
|
||||||
|
|
||||||
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
||||||
|
|
@ -68,13 +66,13 @@ training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
evaluation_strategy="steps",
|
evaluation_strategy="steps",
|
||||||
eval_steps=500,
|
eval_steps=500,
|
||||||
save_strategy="steps",
|
|
||||||
save_steps=500,
|
save_steps=500,
|
||||||
learning_rate=2e-5,
|
learning_rate=2e-5,
|
||||||
per_device_train_batch_size=4,
|
per_device_train_batch_size=2,
|
||||||
per_device_eval_batch_size=4,
|
per_device_eval_batch_size=2,
|
||||||
num_train_epochs=10,
|
num_train_epochs=16,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
|
save_total_limit=2,
|
||||||
load_best_model_at_end=True,
|
load_best_model_at_end=True,
|
||||||
metric_for_best_model="loss",
|
metric_for_best_model="loss",
|
||||||
greater_is_better=False,
|
greater_is_better=False,
|
||||||
|
|
@ -95,7 +93,7 @@ trainer = Trainer(
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
# 9️⃣ Zapis modelu
|
# 9️⃣ Zapis modelu
|
||||||
model.save_pretrained("./trained_model/multislav")
|
model.save_pretrained("./models/allegro")
|
||||||
tokenizer.save_pretrained("./trained_model/multislav")
|
tokenizer.save_pretrained("./models/allegro")
|
||||||
|
|
||||||
print("✅ Model został wytrenowany i zapisany!")
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue