mod allegro

This commit is contained in:
l.gabrysiak 2025-02-26 12:08:47 +01:00
parent 735b5fe623
commit 799f08c491
1 changed files with 23 additions and 23 deletions

View File

@ -14,21 +14,17 @@ def prepare_dataset_from_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f: with open(file_path, 'r', encoding='utf-8') as f:
text = f.read() text = f.read()
# Wydziel artykuły za pomocą wyrażenia regularnego
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL) articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
formatted_articles = [] formatted_articles = []
for article in articles: for article in articles:
# Usuń zbędne białe znaki
article = ' '.join(article.strip().split()) article = ' '.join(article.strip().split())
# Wydziel numer artykułu i treść
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL) art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
if art_match: if art_match:
art_number = art_match.group(1) art_number = art_match.group(1)
art_text = art_match.group(2) art_text = art_match.group(2)
# Podziel na paragrafy, jeśli istnieją
paragraphs = re.split(r'\s*\d+\.)', art_text) paragraphs = re.split(r'\s*\d+\.)', art_text)
if len(paragraphs) > 1: if len(paragraphs) > 1:
formatted_paragraphs = [] formatted_paragraphs = []
@ -42,23 +38,24 @@ def prepare_dataset_from_file(file_path):
formatted_articles.append({"text": formatted}) formatted_articles.append({"text": formatted})
# Dodaj przykłady pytań i odpowiedzi questions = [
questions = [ f"Zacytuj artykuł {art_number} Kodeksu pracy.",
f"Zacytuj artykuł {art_number} Kodeksu pracy.", f"Co mówi artykuł {art_number} Kodeksu pracy?",
f"Co mówi artykuł {art_number} Kodeksu pracy?", f"Podaj treść artykułu {art_number} Kodeksu pracy."
f"Podaj treść artykułu {art_number} Kodeksu pracy." ]
] for question in questions:
for question in questions: formatted_articles.append({"text": f"{question}\n{formatted}"})
formatted_articles.append({"text": f"{question}\n{formatted}"})
return formatted_articles return formatted_articles
def main(): def main():
# Inicjalizacja tokenizera # Inicjalizacja tokenizera
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS}) tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
tokenizer.pad_token = tokenizer.eos_token # Dodaj tę linię
print(f"Pad token: {tokenizer.pad_token}")
print(f"Pad token ID: {tokenizer.pad_token_id}")
# Przygotowanie danych # Przygotowanie danych
data = prepare_dataset_from_file(TEXT_FILE_PATH) data = prepare_dataset_from_file(TEXT_FILE_PATH)
@ -70,7 +67,7 @@ def main():
examples["text"], examples["text"],
truncation=True, truncation=True,
padding="max_length", padding="max_length",
max_length=512, # Zwiększono dla dłuższych artykułów max_length=512,
return_tensors="pt" return_tensors="pt"
) )
tokenized["labels"] = tokenized["input_ids"].clone() tokenized["labels"] = tokenized["input_ids"].clone()
@ -80,8 +77,8 @@ def main():
# Model i data collator # Model i data collator
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model.resize_token_embeddings(len(tokenizer)) # Dodaj tę linię model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id # Dodaj tę linię model.config.pad_token_id = tokenizer.pad_token_id
data_collator = DataCollatorForLanguageModeling( data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, tokenizer=tokenizer,
@ -91,22 +88,25 @@ def main():
# Konfiguracja treningu # Konfiguracja treningu
training_args = TrainingArguments( training_args = TrainingArguments(
output_dir="./results", output_dir="./results",
num_train_epochs=32, # Zwiększono liczbę epok num_train_epochs=32,
per_device_train_batch_size=2, per_device_train_batch_size=2,
learning_rate=1e-5, #precyzja uczenia learning_rate=1e-5,
logging_steps=10, logging_steps=10,
weight_decay=0.01, weight_decay=0.01,
report_to="none", report_to="none",
save_strategy="no", save_strategy="steps",
load_best_model_at_end=True, # Ładowanie najlepszego modelu na końcu save_steps=500,
evaluation_strategy="steps",
eval_steps=500,
load_best_model_at_end=True,
) )
# Trainer # Trainer
trainer = Trainer( trainer = Trainer(
model=model, model=model,
args=training_args, args=training_args,
train_dataset=tokenized_dataset, train_dataset=tokenized_dataset,
eval_dataset=tokenized_dataset,
data_collator=data_collator data_collator=data_collator
) )
@ -116,4 +116,4 @@ def main():
tokenizer.save_pretrained("./trained_model/allegro") tokenizer.save_pretrained("./trained_model/allegro")
if __name__ == "__main__": if __name__ == "__main__":
main() main()