mod allegro
This commit is contained in:
parent
735b5fe623
commit
799f08c491
46
allegro.py
46
allegro.py
|
|
@ -14,21 +14,17 @@ def prepare_dataset_from_file(file_path):
|
||||||
with open(file_path, 'r', encoding='utf-8') as f:
|
with open(file_path, 'r', encoding='utf-8') as f:
|
||||||
text = f.read()
|
text = f.read()
|
||||||
|
|
||||||
# Wydziel artykuły za pomocą wyrażenia regularnego
|
|
||||||
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
|
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
|
||||||
|
|
||||||
formatted_articles = []
|
formatted_articles = []
|
||||||
for article in articles:
|
for article in articles:
|
||||||
# Usuń zbędne białe znaki
|
|
||||||
article = ' '.join(article.strip().split())
|
article = ' '.join(article.strip().split())
|
||||||
|
|
||||||
# Wydziel numer artykułu i treść
|
|
||||||
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
|
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
|
||||||
if art_match:
|
if art_match:
|
||||||
art_number = art_match.group(1)
|
art_number = art_match.group(1)
|
||||||
art_text = art_match.group(2)
|
art_text = art_match.group(2)
|
||||||
|
|
||||||
# Podziel na paragrafy, jeśli istnieją
|
|
||||||
paragraphs = re.split(r'(§\s*\d+\.)', art_text)
|
paragraphs = re.split(r'(§\s*\d+\.)', art_text)
|
||||||
if len(paragraphs) > 1:
|
if len(paragraphs) > 1:
|
||||||
formatted_paragraphs = []
|
formatted_paragraphs = []
|
||||||
|
|
@ -42,23 +38,24 @@ def prepare_dataset_from_file(file_path):
|
||||||
|
|
||||||
formatted_articles.append({"text": formatted})
|
formatted_articles.append({"text": formatted})
|
||||||
|
|
||||||
# Dodaj przykłady pytań i odpowiedzi
|
questions = [
|
||||||
questions = [
|
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
|
||||||
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
|
f"Co mówi artykuł {art_number} Kodeksu pracy?",
|
||||||
f"Co mówi artykuł {art_number} Kodeksu pracy?",
|
f"Podaj treść artykułu {art_number} Kodeksu pracy."
|
||||||
f"Podaj treść artykułu {art_number} Kodeksu pracy."
|
]
|
||||||
]
|
for question in questions:
|
||||||
for question in questions:
|
formatted_articles.append({"text": f"{question}\n{formatted}"})
|
||||||
formatted_articles.append({"text": f"{question}\n{formatted}"})
|
|
||||||
|
|
||||||
return formatted_articles
|
return formatted_articles
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# Inicjalizacja tokenizera
|
# Inicjalizacja tokenizera
|
||||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
|
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
|
||||||
tokenizer.pad_token = tokenizer.eos_token # Dodaj tę linię
|
|
||||||
|
print(f"Pad token: {tokenizer.pad_token}")
|
||||||
|
print(f"Pad token ID: {tokenizer.pad_token_id}")
|
||||||
|
|
||||||
# Przygotowanie danych
|
# Przygotowanie danych
|
||||||
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
||||||
|
|
@ -70,7 +67,7 @@ def main():
|
||||||
examples["text"],
|
examples["text"],
|
||||||
truncation=True,
|
truncation=True,
|
||||||
padding="max_length",
|
padding="max_length",
|
||||||
max_length=512, # Zwiększono dla dłuższych artykułów
|
max_length=512,
|
||||||
return_tensors="pt"
|
return_tensors="pt"
|
||||||
)
|
)
|
||||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
tokenized["labels"] = tokenized["input_ids"].clone()
|
||||||
|
|
@ -80,8 +77,8 @@ def main():
|
||||||
|
|
||||||
# Model i data collator
|
# Model i data collator
|
||||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
||||||
model.resize_token_embeddings(len(tokenizer)) # Dodaj tę linię
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
model.config.pad_token_id = tokenizer.pad_token_id # Dodaj tę linię
|
model.config.pad_token_id = tokenizer.pad_token_id
|
||||||
|
|
||||||
data_collator = DataCollatorForLanguageModeling(
|
data_collator = DataCollatorForLanguageModeling(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
|
|
@ -91,22 +88,25 @@ def main():
|
||||||
# Konfiguracja treningu
|
# Konfiguracja treningu
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
num_train_epochs=32, # Zwiększono liczbę epok
|
num_train_epochs=32,
|
||||||
per_device_train_batch_size=2,
|
per_device_train_batch_size=2,
|
||||||
learning_rate=1e-5, #precyzja uczenia
|
learning_rate=1e-5,
|
||||||
logging_steps=10,
|
logging_steps=10,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
report_to="none",
|
report_to="none",
|
||||||
save_strategy="no",
|
save_strategy="steps",
|
||||||
load_best_model_at_end=True, # Ładowanie najlepszego modelu na końcu
|
save_steps=500,
|
||||||
|
evaluation_strategy="steps",
|
||||||
|
eval_steps=500,
|
||||||
|
load_best_model_at_end=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
# Trainer
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_dataset,
|
train_dataset=tokenized_dataset,
|
||||||
|
eval_dataset=tokenized_dataset,
|
||||||
data_collator=data_collator
|
data_collator=data_collator
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -116,4 +116,4 @@ def main():
|
||||||
tokenizer.save_pretrained("./trained_model/allegro")
|
tokenizer.save_pretrained("./trained_model/allegro")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue