This commit is contained in:
l.gabrysiak 2025-02-25 10:03:59 +01:00
commit 823e55099a
5 changed files with 4036 additions and 0 deletions

3
file_catalog.json Normal file
View File

@ -0,0 +1,3 @@
{
"kodekspracy.md": "Kodeks pracy"
}

3861
files/kodekspracy.md Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,11 @@
Podstawowe zasady naliczania urlopu proporcjonalnego
Kalendarzowy miesiąc pracy odpowiada 1/12 wymiaru urlopu wypoczynkowego, który przysługuje pracownikowi na podstawie art. 154 § 1 i 2 k.p. To oznacza, że 1 kalendarzowy miesiąc pracy to 1/12 z 20 dni (1,66) lub 26 dni (2,16) urlopu wypoczynkowego dla pracownika na pełnym etacie. Niektórzy zaokrąglają wyniki do 1,67 dnia urlopu i 2,17 dnia urlopu.
Niepełny kalendarzowy miesiąc pracy zaokrągla się w górę do pełnego miesiąca. Jeżeli pracownik przepracuje tylko 1 dzień w miesiącu, zyska prawo do urlopu za cały miesiąc.
Niepełny dzień urlopu zaokrągla się w górę do pełnego dnia. Uwaga nie musisz tak postąpić w przypadku urlopu liczonego proporcjonalnie dla osoby, która podjęła pierwszą pracę w życiu.
Zaokrąglając niepełne dni urlopu, pamiętaj, że wymiar urlopu wypoczynkowego należny pracownikowi pełnoetatowemu w danym roku kalendarzowym nie może przekroczyć 20 lub 26 dni (w zależności od stażu pracy).
Jeśli pracownik rozwiązuje umowę o pracę z dotychczasowym pracodawcą i zawiera nową umowę o pracę z kolejnym pracodawcą w tym samym miesiącu kalendarzowym, to tylko wcześniejszy pracodawca zaokrągla ten niepełny miesiąc pracy w górę.

152
hft.py Normal file
View File

@ -0,0 +1,152 @@
import os
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from datasets import load_dataset
from PIL import Image
import re
import pytesseract
import docx2txt
import PyPDF2
def load_file_catalog(catalog_path):
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
def identify_legal_document(filename, file_catalog):
return file_catalog.get(filename, f"")
# Funkcja do ekstrakcji tekstu z różnych typów plików
def extract_text_from_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif ext == '.pdf':
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
text += page.extract_text()
return text
elif ext in ['.doc', '.docx']:
return docx2txt.process(file_path)
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
return pytesseract.image_to_string(Image.open(file_path))
else:
return ""
# Przygotowanie danych
def prepare_dataset(directory, catalog_path):
file_catalog = load_file_catalog(catalog_path)
data = []
for root, _, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
text = extract_text_from_file(file_path)
if text:
# Sprawdzenie, czy plik znajduje się w katalogu
doc_type = identify_legal_document(file, file_catalog)
if doc_type != "Opracowanie własne":
# Przetwarzanie dla aktów prawnych
articles = re.split(r'(Art\.\s+\d+\.)', text)[1:]
for i in range(0, len(articles), 2):
if i + 1 < len(articles):
article_number = articles[i].strip()
article_content = articles[i + 1].strip()
data.append({
"text": f"{article_number} {article_content}",
"source": f"{doc_type}, {article_number}"
})
else:
# Przetwarzanie dla zwykłych dokumentów
chunks = [text[i:i + 512] for i in range(0, len(text), 512)]
for chunk in chunks:
data.append({
"text": chunk,
"source": f""
})
return data
# Tokenizacja danych
def tokenize_function(examples):
inputs = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
inputs["source"] = examples["source"]
return inputs
# Dostosowany model
class CustomModel(AutoModelForCausalLM):
def __init__(self, config):
super().__init__(config)
self.source_embedding = nn.Embedding(1000, config.hidden_size) # Zakładamy maksymalnie 1000 różnych źródeł
def forward(self, input_ids, attention_mask=None, labels=None, source=None):
outputs = super().forward(input_ids, attention_mask=attention_mask, labels=labels)
if source is not None:
source_embeds = self.source_embedding(source)
outputs.logits += source_embeds.unsqueeze(1)
return outputs
# Dostosowany Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.pop("labels")
source = inputs.pop("source")
outputs = model(**inputs, labels=labels, source=source)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
# Przygotowanie modelu i tokenizera
model_name = "google/gemma-2b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = CustomModel.from_pretrained(model_name)
# Przygotowanie datasetu
catalog_path = "file_catalog.json"
data = prepare_dataset("files")
dataset = load_dataset("dict", data=data)
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
)
# Inicjalizacja Trainera
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
)
# Trening modelu
trainer.train()
# Zapisanie modelu
trainer.save_model("./gemma2_finetuned")
# Funkcja do generowania odpowiedzi z cytowaniem
def generate_answer(question, model, tokenizer, dataset):
inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200, num_return_sequences=1, output_scores=True, return_dict_in_generate=True)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
# Znajdź najbardziej prawdopodobne źródło
source_probs = outputs.scores[-1][:, model.source_embedding.weight.shape[0]:]
most_likely_source_idx = torch.argmax(source_probs).item()
most_likely_source = dataset[most_likely_source_idx]['source']
return f"{answer}\n\nŹródło: {most_likely_source}"
# Przykład użycia
question = "Ile dni urlopu przysługuje pracownikowi?"
answer = generate_answer(question, model, tokenizer, dataset)
print(answer)

9
readme.md Normal file
View File

@ -0,0 +1,9 @@
Jeśli masz własny model (np. po fine-tuningu na danych BHP), musisz przekonwertować go do formatu GGUF, który obsługuje Ollama.
Konwersja do GGUF
1. Skorzystaj z narzędzia dostarczonego przez Ollama do konwersji:
ollama convert your_model.bin --output your_model.gguf
2. Umieść przekonwertowany model w katalogu Ollama:
mv your_model.gguf ~/.ollama/models/
Uruchomienie dostrojonego modelu
Użyj nazwy swojego modelu w poleceniu:
ollama run your_model "Jakie są wymagania dotyczące ochrony słuchu?"