mod
This commit is contained in:
parent
0ace5d1348
commit
999b9ade54
61
hft.py
61
hft.py
|
|
@ -1,8 +1,7 @@
|
|||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
#from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
||||
from transformers import GPTNeoForCausalLM, Trainer, TrainingArguments, AutoTokenizer, AutoModelForCausalLM # Zmiana importu
|
||||
from transformers import GPTNeoForCausalLM, Trainer, TrainingArguments, AutoTokenizer, AutoModelForCausalLM
|
||||
from datasets import Dataset
|
||||
from PIL import Image
|
||||
import re
|
||||
|
|
@ -14,13 +13,12 @@ from torch.cuda.amp import autocast
|
|||
from collections import defaultdict
|
||||
from huggingface_hub import login
|
||||
|
||||
import torch
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Logowanie do Hugging Face Hub
|
||||
login(token="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")
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
# Nowa klasa do zarządzania źródłami
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
||||
|
|
@ -78,7 +76,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
|
||||
doc_type = identify_legal_document(file, file_catalog)
|
||||
if doc_type != "Opracowanie własne":
|
||||
articles = re.split(r'(Art\.\s+\d+[\.\s])', text)
|
||||
articles = re.split(r'(Art\.?\s+\d+[\.\s])', text)
|
||||
for i in range(1, len(articles), 2):
|
||||
article_number = articles[i].strip()
|
||||
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
||||
|
|
@ -94,7 +92,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
for chunk in chunks:
|
||||
data.append({
|
||||
"text": chunk,
|
||||
"source_idx": -1 # Brak źródła
|
||||
"source_idx": -1
|
||||
})
|
||||
return data
|
||||
|
||||
|
|
@ -114,13 +112,10 @@ def custom_collate_fn(batch):
|
|||
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
|
||||
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
|
||||
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
|
||||
|
||||
# Dodajemy domyślne source_idx, jeśli nie istnieje
|
||||
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
|
||||
|
||||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
||||
|
||||
class CustomModel(GPTNeoForCausalLM): # Zmiana klasy bazowej
|
||||
class CustomModel(GPTNeoForCausalLM):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.source_embedding = nn.Embedding(
|
||||
|
|
@ -130,48 +125,42 @@ class CustomModel(GPTNeoForCausalLM): # Zmiana klasy bazowej
|
|||
)
|
||||
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||
outputs = super().forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
labels=labels,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if source_idx is not None:
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
||||
outputs.logits += source_embeds
|
||||
|
||||
with autocast():
|
||||
outputs = super().forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
labels=labels,
|
||||
**kwargs
|
||||
)
|
||||
if source_idx is not None:
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
||||
outputs.logits += source_embeds
|
||||
return outputs
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
labels = inputs.pop("labels")
|
||||
source_idx = inputs.pop("source_idx")
|
||||
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
||||
with autocast():
|
||||
source_idx = inputs.pop("source_idx")
|
||||
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
||||
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
||||
|
||||
# Inicjalizacja komponentów
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "EleutherAI/gpt-neo-2.7B" #"google/gemma-2-2b"
|
||||
model_name = "EleutherAI/gpt-neo-2.7B"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Przygotowanie danych
|
||||
catalog_path = "file_catalog.json"
|
||||
data = prepare_dataset("files", catalog_path, source_mapper)
|
||||
data = prepare_dataset("files", "file_catalog.json", source_mapper)
|
||||
dataset = Dataset.from_list(data)
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
|
||||
|
||||
# Inicjalizacja modelu
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
#model = CustomModel.from_pretrained(model_name, config=config)
|
||||
model = CustomModel.from_pretrained(model_name)
|
||||
model.config.gradient_checkpointing = True
|
||||
model.config.use_cache = False
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
|
|
@ -182,18 +171,16 @@ training_args = TrainingArguments(
|
|||
save_strategy="steps",
|
||||
save_steps=1000,
|
||||
report_to="none",
|
||||
gradient_checkpointing=True,
|
||||
per_device_train_batch_size=4, # batch size dla treningu
|
||||
per_device_eval_batch_size=4, # batch size dla ewaluacji
|
||||
logging_dir='./logs' # folder do logów
|
||||
per_device_train_batch_size=4,
|
||||
per_device_eval_batch_size=4,
|
||||
logging_dir='./logs'
|
||||
)
|
||||
|
||||
# Trening
|
||||
trainer = CustomTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=custom_collate_fn # Użyj niestandardowego collate_fn
|
||||
data_collator=custom_collate_fn
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue