This commit is contained in:
l.gabrysiak 2025-02-25 14:56:17 +01:00
parent 0ace5d1348
commit 999b9ade54
1 changed files with 24 additions and 37 deletions

61
hft.py
View File

@ -1,8 +1,7 @@
import os import os
import torch import torch
import torch.nn as nn import torch.nn as nn
#from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer from transformers import GPTNeoForCausalLM, Trainer, TrainingArguments, AutoTokenizer, AutoModelForCausalLM
from transformers import GPTNeoForCausalLM, Trainer, TrainingArguments, AutoTokenizer, AutoModelForCausalLM # Zmiana importu
from datasets import Dataset from datasets import Dataset
from PIL import Image from PIL import Image
import re import re
@ -14,13 +13,12 @@ from torch.cuda.amp import autocast
from collections import defaultdict from collections import defaultdict
from huggingface_hub import login from huggingface_hub import login
import torch
torch.cuda.empty_cache() torch.cuda.empty_cache()
# Logowanie do Hugging Face Hub
login(token="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") login(token="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")
os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Nowa klasa do zarządzania źródłami
class SourceMapper: class SourceMapper:
def __init__(self): def __init__(self):
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx)) self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
@ -78,7 +76,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
doc_type = identify_legal_document(file, file_catalog) doc_type = identify_legal_document(file, file_catalog)
if doc_type != "Opracowanie własne": if doc_type != "Opracowanie własne":
articles = re.split(r'(Art\.\s+\d+[\.\s])', text) articles = re.split(r'(Art\.?\s+\d+[\.\s])', text)
for i in range(1, len(articles), 2): for i in range(1, len(articles), 2):
article_number = articles[i].strip() article_number = articles[i].strip()
article_content = articles[i+1].strip() if i+1 < len(articles) else "" article_content = articles[i+1].strip() if i+1 < len(articles) else ""
@ -94,7 +92,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
for chunk in chunks: for chunk in chunks:
data.append({ data.append({
"text": chunk, "text": chunk,
"source_idx": -1 # Brak źródła "source_idx": -1
}) })
return data return data
@ -114,13 +112,10 @@ def custom_collate_fn(batch):
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch]) input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch]) attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
labels = torch.stack([torch.tensor(b["labels"]) for b in batch]) labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
# Dodajemy domyślne source_idx, jeśli nie istnieje
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long) source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx} return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
class CustomModel(GPTNeoForCausalLM): # Zmiana klasy bazowej class CustomModel(GPTNeoForCausalLM):
def __init__(self, config): def __init__(self, config):
super().__init__(config) super().__init__(config)
self.source_embedding = nn.Embedding( self.source_embedding = nn.Embedding(
@ -130,48 +125,42 @@ class CustomModel(GPTNeoForCausalLM): # Zmiana klasy bazowej
) )
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs): def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
outputs = super().forward( with autocast():
input_ids=input_ids, outputs = super().forward(
attention_mask=attention_mask, input_ids=input_ids,
labels=labels, attention_mask=attention_mask,
**kwargs labels=labels,
) **kwargs
)
if source_idx is not None: if source_idx is not None:
source_embeds = self.source_embedding(source_idx).unsqueeze(1) source_embeds = self.source_embedding(source_idx).unsqueeze(1)
outputs.logits += source_embeds outputs.logits += source_embeds
return outputs return outputs
class CustomTrainer(Trainer): class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs): def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels") labels = inputs.pop("labels")
source_idx = inputs.pop("source_idx") with autocast():
outputs = model(**inputs, labels=labels, source_idx=source_idx) source_idx = inputs.pop("source_idx")
outputs = model(**inputs, labels=labels, source_idx=source_idx)
return (outputs.loss, outputs) if return_outputs else outputs.loss return (outputs.loss, outputs) if return_outputs else outputs.loss
# Inicjalizacja komponentów
source_mapper = SourceMapper() source_mapper = SourceMapper()
model_name = "EleutherAI/gpt-neo-2.7B" #"google/gemma-2-2b" model_name = "EleutherAI/gpt-neo-2.7B"
tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie danych data = prepare_dataset("files", "file_catalog.json", source_mapper)
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path, source_mapper)
dataset = Dataset.from_list(data) dataset = Dataset.from_list(data)
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32) tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
# Inicjalizacja modelu
config = AutoModelForCausalLM.from_pretrained(model_name).config config = AutoModelForCausalLM.from_pretrained(model_name).config
#model = CustomModel.from_pretrained(model_name, config=config)
model = CustomModel.from_pretrained(model_name) model = CustomModel.from_pretrained(model_name)
model.config.gradient_checkpointing = True model.config.gradient_checkpointing = True
model.config.use_cache = False model.config.use_cache = False
model.resize_token_embeddings(len(tokenizer)) model.resize_token_embeddings(len(tokenizer))
model.gradient_checkpointing_enable() model.gradient_checkpointing_enable()
# Konfiguracja treningu
training_args = TrainingArguments( training_args = TrainingArguments(
output_dir="./results", output_dir="./results",
num_train_epochs=3, num_train_epochs=3,
@ -182,18 +171,16 @@ training_args = TrainingArguments(
save_strategy="steps", save_strategy="steps",
save_steps=1000, save_steps=1000,
report_to="none", report_to="none",
gradient_checkpointing=True, per_device_train_batch_size=4,
per_device_train_batch_size=4, # batch size dla treningu per_device_eval_batch_size=4,
per_device_eval_batch_size=4, # batch size dla ewaluacji logging_dir='./logs'
logging_dir='./logs' # folder do logów
) )
# Trening
trainer = CustomTrainer( trainer = CustomTrainer(
model=model, model=model,
args=training_args, args=training_args,
train_dataset=tokenized_dataset, train_dataset=tokenized_dataset,
data_collator=custom_collate_fn # Użyj niestandardowego collate_fn data_collator=custom_collate_fn
) )
trainer.train() trainer.train()