This commit is contained in:
l.gabrysiak 2025-02-25 22:50:35 +01:00
parent 5e96ed3162
commit 999eded568
1 changed files with 99 additions and 3 deletions

102
hft.py
View File

@ -1,3 +1,8 @@
import nltk
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('punkt', quiet=True)
import os import os
import torch import torch
import random import random
@ -45,7 +50,7 @@ class SourceMapper:
class LegalProcessor: class LegalProcessor:
def __init__(self, catalog_path): def __init__(self, catalog_path):
self.catalog = self.load_catalog(catalog_path) self.catalog = self.load_catalog(catalog_path)
self.augmenter = SynonymAug(aug_src='wordnet', aug_max=3) self.augmenter = SynonymAug(aug_src='wordnet', aug_max=3, lang='pol')
def load_catalog(self, path): def load_catalog(self, path):
try: try:
@ -137,6 +142,34 @@ class LegalProcessor:
return [f"[Custom] {chunk}" for chunk in chunks if chunk.strip()] return [f"[Custom] {chunk}" for chunk in chunks if chunk.strip()]
class CustomModel(torch.nn.Module):
def __init__(self, model_name):
super().__init__()
self.base_model = AutoModelForCausalLM.from_pretrained(model_name)
self.source_emb = torch.nn.Embedding(1000, self.base_model.config.hidden_size)
# Zamrożenie parametrów bazowych
for param in self.base_model.parameters():
param.requires_grad = False
# Odmrożenie ostatnich warstw
for layer in self.base_model.transformer.h[-2:]:
for param in layer.parameters():
param.requires_grad = True
self.base_model.get_output_embeddings().requires_grad_(True)
def forward(self, input_ids, attention_mask, labels, source_idx):
inputs_embeds = self.base_model.get_input_embeddings()(input_ids)
source_emb = self.source_emb(source_idx.clamp(0, 999)).unsqueeze(1)
inputs_embeds += source_emb
return self.base_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels
)
def main(): def main():
# Inicjalizacja komponentów # Inicjalizacja komponentów
source_mapper = SourceMapper() source_mapper = SourceMapper()
@ -173,7 +206,7 @@ def main():
# Przetwarzanie wielowątkowe # Przetwarzanie wielowątkowe
with ThreadPoolExecutor(max_workers=cpu_count()) as executor: with ThreadPoolExecutor(max_workers=cpu_count()) as executor:
futures = [] futures = []
for root, _, files in os.walk("files"): # Zmieniono na "files" for root, _, files in os.walk("files"):
for file in files: for file in files:
file_path = os.path.join(root, file) file_path = os.path.join(root, file)
futures.append(executor.submit(process_and_augment, file_path)) futures.append(executor.submit(process_and_augment, file_path))
@ -181,7 +214,70 @@ def main():
for future in futures: for future in futures:
future.result() future.result()
# Reszta kodu pozostaje bez zmian... print(f"\nPrzygotowano {len(data)} przykładów treningowych")
print("Przykładowe dane:")
for example in random.sample(data, 3):
print(f"\nŹródło: {source_mapper.get_source(example['source_idx'])}")
print(f"Tekst: {example['text'][:150]}...")
# Przygotowanie datasetu
dataset = Dataset.from_list(data)
def tokenize_fn(examples):
tokenized = tokenizer(
examples["text"],
max_length=512,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return {
"input_ids": tokenized["input_ids"].squeeze(),
"attention_mask": tokenized["attention_mask"].squeeze(),
"labels": tokenized["input_ids"].squeeze(),
"source_idx": examples["source_idx"]
}
tokenized_ds = dataset.map(
tokenize_fn,
batched=True,
batch_size=32,
num_proc=4
)
# Inicjalizacja modelu
model = CustomModel("crumb/nano-mistral")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./wyniki",
num_train_epochs=5,
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=20,
save_strategy="epoch",
report_to="none"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_ds,
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
)
# Trening
print("\nRozpoczynanie treningu...")
trainer.train()
# Zapis modelu
model.save_pretrained("./trained_legal_model")
tokenizer.save_pretrained("./trained_legal_model")
print("Trening zakończony pomyślnie!")
if __name__ == "__main__": if __name__ == "__main__":
main() main()