Ten kod działa!

This commit is contained in:
l.gabrysiak 2025-02-25 23:32:39 +01:00
parent 537e191d5f
commit a0aab164cb
1 changed files with 208 additions and 243 deletions

423
hft.py
View File

@ -1,296 +1,261 @@
import os import os
import torch import torch
import torch.nn as nn import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from datasets import Dataset
import re import re
import json import json
import numpy as np
import PyPDF2 import PyPDF2
import docx2txt import docx2txt
import pytesseract import pytesseract
from PIL import Image from PIL import Image
from collections import defaultdict from collections import defaultdict
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import Dataset, Features, Value
from huggingface_hub import login from huggingface_hub import login
# Konfiguracja
os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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") login(token="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")
class LegalAITrainer: class SourceMapper:
def __init__(self): def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
self.idx_to_source = {}
class SourceMapper: def add_source(self, source):
def __init__(self): if source and source not in self.source_to_idx:
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx)) idx = self.source_to_idx[source]
self.idx_to_source = {} self.idx_to_source[idx] = source
def add_source(self, source): def get_idx(self, source):
if source and source not in self.source_to_idx: return self.source_to_idx[source] if source else -1
idx = self.source_to_idx[source]
self.idx_to_source[idx] = source
def get_idx(self, source): def get_source(self, idx):
return self.source_to_idx[source] if source else -1 return self.idx_to_source.get(idx, "Unknown")
def get_source(self, idx): def load_file_catalog(catalog_path):
return self.idx_to_source.get(idx, "Unknown") try:
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
except Exception as e:
print(f"Błąd wczytywania katalogu plików: {str(e)}")
return {}
class LegalModel(nn.Module): def identify_legal_document(filename, file_catalog):
def __init__(self, model_name, config): base_name = os.path.splitext(filename)[0].lower()
super().__init__() return file_catalog.get(base_name, "Opracowanie własne")
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(100000, config.hidden_size, padding_idx=-1)
self.confidence_layer = nn.Linear(config.hidden_size, 1)
for param in self.base_model.parameters(): def extract_text_from_file(file_path):
param.requires_grad = False try:
_, ext = os.path.splitext(file_path)
ext = ext.lower()
for layer in [self.source_embedding, self.confidence_layer]: if ext in ['.txt', '.md']:
for param in layer.parameters(): with open(file_path, 'r', encoding='utf-8') as file:
param.requires_grad = True return file.read()
elif ext == '.pdf':
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None): text = ""
if source_idx is not None: try:
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1) with open(file_path, 'rb') as file:
source_embeds = self.source_embedding(source_idx).unsqueeze(1) reader = PyPDF2.PdfReader(file)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
outputs = self.base_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels
)
else:
outputs = self.base_model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
confidence = torch.sigmoid(self.confidence_layer(outputs.hidden_states[-1].mean(dim=1)))
return {
"loss": outputs.loss,
"logits": outputs.logits,
"confidence": confidence,
"hidden_states": outputs.hidden_states
}
def load_file_catalog(self, catalog_path):
try:
with open(catalog_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"Błąd ładowania katalogu: {str(e)}")
return {}
def extract_text(self, file_path):
ext = os.path.splitext(file_path)[1].lower()
try:
if ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
elif ext == '.pdf':
text = ""
with open(file_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages: for page in reader.pages:
text += page.extract_text() or "" text += page.extract_text() or ""
return text except Exception as e:
elif ext in ['.doc', '.docx']: print(f"Błąd PDF: {str(e)}")
return docx2txt.process(file_path) return text
elif ext in ['.jpg', '.jpeg', '.png']: elif ext in ['.doc', '.docx']:
return pytesseract.image_to_string(Image.open(file_path)) return docx2txt.process(file_path)
else: elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
return "" return pytesseract.image_to_string(Image.open(file_path))
except Exception as e: else:
print(f"Błąd przetwarzania {file_path}: {str(e)}") print(f"Nieobsługiwany format pliku: {ext}")
return "" return ""
except Exception as e:
print(f"Błąd ekstrakcji tekstu: {str(e)}")
return ""
def prepare_data(self, data_dir, catalog_path): def prepare_dataset(directory, catalog_path, source_mapper):
catalog = self.load_file_catalog(catalog_path) file_catalog = load_file_catalog(catalog_path)
data = [] data = []
source_mapper = self.SourceMapper()
for root, _, files in os.walk(data_dir): print(f"\n{'='*50}\nDIAGNOSTYKA DANYCH\n{'='*50}")
for file in files:
file_path = os.path.join(root, file)
text = self.extract_text(file_path)
if not text: for root, _, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
print(f"\nPrzetwarzanie pliku: {file_path}")
try:
text = extract_text_from_file(file_path)
if not text.strip():
print("Pominięto - brak tekstu")
continue continue
doc_type = catalog.get(os.path.splitext(file)[0].lower(), "Opracowanie własne") print(f"Długość tekstu: {len(text)} znaków")
doc_type = identify_legal_document(file, file_catalog)
print(f"Rozpoznany typ dokumentu: {doc_type}")
if doc_type != "Opracowanie własne": if doc_type != "Opracowanie własne":
articles = re.split(r'(?i)(Art\.\s*\d+[a-z]*)', text) articles = re.split(r'(?i)(Art[\.\s]+\d+[\.\s]?)', text)
for i in range(1, len(articles), 2): articles = [a.strip() for a in articles if a.strip()]
art_num = articles[i].strip()
content = articles[i+1].strip()
if len(content) < 100: print(f"Znaleziono {len(articles)} fragmentów")
for i in range(0, len(articles)-1, 2):
article_number = articles[i]
article_content = articles[i+1]
if len(article_content) < 50:
continue continue
source = f"{doc_type}, {art_num}" source = f"{doc_type}, {article_number}"
source_mapper.add_source(source) source_mapper.add_source(source)
data.append({ data.append({
"text": f"[LEGAL] {art_num} {content}", "text": f"{article_number} {article_content}",
"source_idx": source_mapper.get_idx(source), "source_idx": source_mapper.get_idx(source)
"is_legal": 1
}) })
else: else:
chunks = [f"[GENERAL] {text[i:i+512]}" for i in range(0, len(text), 512)] clean_text = re.sub(r'\s+', ' ', text).strip()
chunks = [clean_text[i:i+512] for i in range(0, len(clean_text), 512)]
chunks = [c for c in chunks if c.strip()]
for chunk in chunks: for chunk in chunks:
data.append({ data.append({
"text": chunk, "text": chunk,
"source_idx": -1, "source_idx": -1
"is_legal": 0
}) })
print(f"Dodano {len(chunks)} chunków")
features = Features({ except Exception as e:
"text": Value("string"), print(f"Błąd podczas przetwarzania pliku: {str(e)}")
"source_idx": Value("int32"), continue
"is_legal": Value("int32")
})
return Dataset.from_dict({ print(f"\nPodsumowanie przygotowania danych:")
"text": [d["text"] for d in data], print(f"Łączna liczba przykładów: {len(data)}")
"source_idx": np.array([d["source_idx"] for d in data], dtype=np.int32), if data:
"is_legal": np.array([d["is_legal"] for d in data], dtype=np.int32) print("Przykładowy wpis:")
}, features=features), source_mapper print(json.dumps(data[0], indent=2, ensure_ascii=False))
else:
print("BRAK DANYCH - sprawdź diagnostykę powyżej")
def train(self, model_name="crumb/nano-mistral", data_dir="data", catalog_path="catalog.json"): return data
dataset, source_mapper = self.prepare_data(data_dir, catalog_path)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
def tokenize_fn(examples): class CustomModel(nn.Module):
tokenized = tokenizer( def __init__(self, model_name, config):
examples["text"], super().__init__()
padding="max_length", self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
truncation=True, self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1)
max_length=512,
return_tensors="pt" for param in self.base_model.parameters():
param.requires_grad = False
for param in self.base_model.get_output_embeddings().parameters():
param.requires_grad = True
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None:
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(valid_indices).unsqueeze(1)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
return self.base_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
**kwargs
) )
return { return self.base_model(
"input_ids": tokenized["input_ids"].squeeze().tolist(), input_ids=input_ids,
"attention_mask": tokenized["attention_mask"].squeeze().tolist(), attention_mask=attention_mask,
"labels": tokenized["input_ids"].squeeze().clone().tolist(), labels=labels,
"source_idx": examples["source_idx"] **kwargs
}
tokenized_dataset = dataset.map(tokenize_fn, batched=True, batch_size=16)
class CustomDataCollator(DataCollatorForLanguageModeling):
def torch_call(self, examples):
batch = super().torch_call(examples)
if "source_idx" in examples[0]:
batch["source_idx"] = torch.tensor(
[ex["source_idx"] for ex in examples],
dtype=torch.int32
)
return batch
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = self.LegalModel(model_name, config).to(self.device)
training_args = TrainingArguments(
output_dir="./legal_ai_model",
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=50,
save_strategy="steps",
save_steps=500,
report_to="none",
remove_unused_columns=False
) )
class LegalTrainer(Trainer): def generate(self, *args, **kwargs):
def compute_loss(self, model, inputs, return_outputs=False): return self.base_model.generate(*args, **kwargs)
outputs = model(**inputs)
loss = outputs["loss"]
target_conf = (inputs["source_idx"] != -1).float() class CustomDataCollator(DataCollatorForLanguageModeling):
conf_loss = nn.BCELoss()(outputs["confidence"].squeeze(), target_conf) def torch_call(self, examples):
# Przetwórz podstawowe pola
input_ids = torch.stack([torch.tensor(ex["input_ids"]) for ex in examples])
attention_mask = torch.stack([torch.tensor(ex["attention_mask"]) for ex in examples])
labels = torch.stack([torch.tensor(ex["labels"]) for ex in examples])
total_loss = loss + 0.7 * conf_loss batch = {
return (total_loss, outputs) if return_outputs else total_loss "input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
trainer = LegalTrainer( # Dodaj source_idx jeśli istnieje
model=model, if "source_idx" in examples[0]:
args=training_args, source_idx = torch.stack([torch.tensor(ex["source_idx"]) for ex in examples])
train_dataset=tokenized_dataset, batch["source_idx"] = source_idx
data_collator=CustomDataCollator(tokenizer=tokenizer, mlm=False)
)
print("Rozpoczęcie treningu...") return batch
trainer.train()
model.save_pretrained("./trained_legal_ai") def main():
tokenizer.save_pretrained("./trained_legal_ai") source_mapper = SourceMapper()
with open("./trained_legal_ai/source_mapper.json", "w") as f: model_name = "crumb/nano-mistral"
json.dump(source_mapper.idx_to_source, f) tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
print("Trening zakończony!") # Przygotowanie danych
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path, source_mapper)
def generate_response(self, prompt, confidence_threshold=0.65): if not data:
model = self.LegalModel.from_pretrained( print("\nBrak danych do treningu!")
"./trained_legal_ai", return
config=AutoModelForCausalLM.from_pretrained("crumb/nano-mistral").config
).to(self.device)
tokenizer = AutoTokenizer.from_pretrained("./trained_legal_ai") #dataset = Dataset.from_list(data)
dataset = Dataset.from_dict({k: [d[k] for d in data] for k in data[0]})
with open("./trained_legal_ai/source_mapper.json", "r") as f:
source_mapper = json.load(f)
inputs = tokenizer( def tokenize_function(examples):
f"[PROMPT] {prompt} [RESPONSE]", tokenized = tokenizer(
return_tensors="pt", examples["text"],
truncation=True,
padding="max_length",
max_length=512, max_length=512,
truncation=True return_tensors="pt"
).to(self.device) )
return {
"input_ids": tokenized["input_ids"].squeeze(),
"attention_mask": tokenized["attention_mask"].squeeze(),
"labels": tokenized["input_ids"].squeeze().clone(),
"source_idx": examples["source_idx"] # Dodano bez konwersji do tensora
}
with torch.no_grad(): tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)
outputs = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=512,
do_sample=True,
temperature=0.7,
top_k=50,
pad_token_id=tokenizer.eos_token_id,
output_scores=True,
return_dict_in_generate=True
)
full_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) model = CustomModel(model_name, AutoModelForCausalLM.from_pretrained(model_name).config)
confidence = torch.sigmoid(outputs.scores[-1][:, tokenizer.eos_token_id]).item() model.source_mapper = source_mapper
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
citations = list(set(re.findall(r"Art\.\s*\d+[a-z]*", full_text))) training_args = TrainingArguments(
verified = [c for c in citations if any(c in s for s in source_mapper.values())] output_dir="./results",
num_train_epochs=3,
if confidence < confidence_threshold or not verified: per_device_train_batch_size=2,
return "Nie mogę udzielić jednoznacznej odpowiedzi na podstawie dostępnych danych." gradient_accumulation_steps=4,
else: learning_rate=2e-5,
return f"{full_text}\n\nPotwierdzone źródła: {', '.join(verified)}" fp16=torch.cuda.is_available(),
logging_steps=10,
if __name__ == "__main__": save_strategy="steps",
legal_ai = LegalAITrainer() save_steps=1000,
report_to="none",
legal_ai.train( remove_unused_columns=False
model_name="crumb/nano-mistral",
data_dir="./legal_docs",
catalog_path="./catalog.json"
) )
test_prompt = "Jakie są kary za nieprzestrzeganie przepisów RODO?" trainer = Trainer(
print(legal_ai.generate_response(test_prompt)) model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=CustomDataCollator(tokenizer=tokenizer, mlm=False)
)
print("\nRozpoczęcie treningu...")
trainer.train()
if __name__ == "__main__":
main()