mod
This commit is contained in:
parent
58995c1181
commit
b14dc7f278
188
hft.py
188
hft.py
|
|
@ -12,9 +12,9 @@ import json
|
|||
from collections import defaultdict
|
||||
from huggingface_hub import login
|
||||
|
||||
# Konfiguracja
|
||||
os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
login(token="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")
|
||||
|
||||
class SourceMapper:
|
||||
|
|
@ -90,7 +90,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
for chunk in chunks:
|
||||
data.append({
|
||||
"text": chunk,
|
||||
"source_idx": -1 # Brak źródła
|
||||
"source_idx": -1
|
||||
})
|
||||
return data
|
||||
|
||||
|
|
@ -111,127 +111,117 @@ def custom_collate_fn(batch):
|
|||
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
|
||||
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
|
||||
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
|
||||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"labels": labels,
|
||||
"source_idx": source_idx
|
||||
}
|
||||
|
||||
class CustomModel(nn.Module):
|
||||
def __init__(self, model_name, config):
|
||||
super().__init__()
|
||||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
||||
self.source_embedding = nn.Embedding(
|
||||
num_embeddings=1000,
|
||||
embedding_dim=config.hidden_size,
|
||||
padding_idx=-1
|
||||
)
|
||||
self.source_embedding = nn.Embedding(1000, config.hidden_size, padding_idx=-1)
|
||||
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||
if source_idx is not None:
|
||||
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1)
|
||||
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
|
||||
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
|
||||
outputs = self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||
else:
|
||||
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||
return outputs
|
||||
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
return self.base_model.generate(*args, **kwargs)
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
labels = inputs.pop("labels")
|
||||
source_idx = inputs.pop("source_idx", None)
|
||||
outputs = model(input_ids=inputs["input_ids"],
|
||||
attention_mask=inputs["attention_mask"],
|
||||
labels=labels,
|
||||
source_idx=source_idx)
|
||||
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
||||
def main():
|
||||
# Inicjalizacja
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "crumb/nano-mistral"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Inicjalizacja komponentów
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "crumb/nano-mistral"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
# Przygotowanie danych
|
||||
catalog_path = "file_catalog.json"
|
||||
data = prepare_dataset("files", catalog_path, source_mapper)
|
||||
dataset = Dataset.from_list(data)
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
|
||||
|
||||
# Przygotowanie danych
|
||||
catalog_path = "file_catalog.json"
|
||||
data = prepare_dataset("files", catalog_path, source_mapper)
|
||||
dataset = Dataset.from_list(data)
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
|
||||
# Model
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel(model_name, config)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
# Inicjalizacja modelu
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel(model_name, config)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model = model.to(device)
|
||||
# Trening
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=2,
|
||||
gradient_accumulation_steps=4,
|
||||
learning_rate=2e-5,
|
||||
fp16=torch.cuda.is_available(),
|
||||
logging_steps=1,
|
||||
save_strategy="steps",
|
||||
save_steps=1000,
|
||||
report_to="none"
|
||||
)
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=2,
|
||||
gradient_accumulation_steps=4,
|
||||
learning_rate=2e-5,
|
||||
fp16=torch.cuda.is_available(),
|
||||
logging_steps=1,
|
||||
save_strategy="steps",
|
||||
save_steps=1000,
|
||||
logging_strategy="no",
|
||||
report_to="none"
|
||||
)
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=custom_collate_fn,
|
||||
)
|
||||
print("Rozpoczęcie treningu...")
|
||||
trainer.train()
|
||||
|
||||
# Trening
|
||||
trainer = CustomTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=custom_collate_fn,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
# Funkcja testująca
|
||||
def generate_answer_with_source(question, model, tokenizer, source_mapper, max_length=200):
|
||||
device = next(model.parameters()).device
|
||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
# Testowanie
|
||||
def generate_answer(question):
|
||||
inputs = tokenizer(question, return_tensors="pt").to(device)
|
||||
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_length=max_length,
|
||||
num_return_sequences=1,
|
||||
max_new_tokens=200,
|
||||
temperature=0.7,
|
||||
top_p=0.9,
|
||||
do_sample=True,
|
||||
repetition_penalty=1.2,
|
||||
no_repeat_ngram_size=2,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
|
||||
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
|
||||
# Wyszukiwanie źródeł
|
||||
sources = set()
|
||||
for idx in source_mapper.idx_to_source:
|
||||
if source_mapper.idx_to_source[idx] in answer:
|
||||
sources.add(source_mapper.idx_to_source[idx])
|
||||
|
||||
return {
|
||||
"question": question,
|
||||
"answer": answer,
|
||||
"sources": list(sources) if sources else ["Opracowanie własne"]
|
||||
}
|
||||
|
||||
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
answer = answer.replace(question, "").strip()
|
||||
|
||||
sources = set()
|
||||
for match in re.finditer(r'Art\.\s+\d+', answer):
|
||||
article_ref = match.group(0).strip()
|
||||
for idx, source in source_mapper.idx_to_source.items():
|
||||
if article_ref in source:
|
||||
sources.add(source)
|
||||
|
||||
return {
|
||||
"question": question,
|
||||
"answer": answer,
|
||||
"sources": list(sources) if sources else ["Opracowanie własne"]
|
||||
}
|
||||
|
||||
# Testowanie
|
||||
test_questions = [
|
||||
"Jak brzmi art. 154 kodeksu pracy?"
|
||||
]
|
||||
# Przykładowe testy
|
||||
test_questions = [
|
||||
"Jakie są zasady udzielania urlopu wypoczynkowego?",
|
||||
"Co mówi art. 154 kodeksu pracy?",
|
||||
"Jakie są obowiązki pracodawcy w zakresie BHP?"
|
||||
]
|
||||
|
||||
print("\n" + "="*50 + "\nWYNIKI TESTOW\n" + "="*50)
|
||||
for question in test_questions:
|
||||
result = generate_answer(question)
|
||||
print(f"\nPYTANIE: {result['question']}")
|
||||
print(f"ODPOWIEDŹ: {result['answer'][:500]}")
|
||||
print(f"ŹRÓDŁA: {', '.join(result['sources'])}")
|
||||
print("-"*80)
|
||||
|
||||
print("\n=== TEST MODELU ===")
|
||||
for question in test_questions:
|
||||
result = generate_answer_with_source(question, model, tokenizer, source_mapper)
|
||||
print(f"\nPytanie: {result['question']}")
|
||||
print(f"Odpowiedź: {result['answer']}")
|
||||
print(f"Źródła: {', '.join(result['sources'])}")
|
||||
print("="*80)
|
||||
|
||||
# Zapis modelu
|
||||
save_directory = "./trained_model"
|
||||
os.makedirs(save_directory, exist_ok=True)
|
||||
torch.save(model.state_dict(), os.path.join(save_directory, "model.bin"))
|
||||
tokenizer.save_pretrained(save_directory)
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue