This commit is contained in:
l.gabrysiak 2025-02-25 20:38:44 +01:00
parent 58995c1181
commit b14dc7f278
1 changed files with 89 additions and 99 deletions

188
hft.py
View File

@ -12,9 +12,9 @@ import json
from collections import defaultdict
from huggingface_hub import login
# Konfiguracja
os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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")
class SourceMapper:
@ -90,7 +90,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
for chunk in chunks:
data.append({
"text": chunk,
"source_idx": -1 # Brak źródła
"source_idx": -1
})
return data
@ -111,127 +111,117 @@ def custom_collate_fn(batch):
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
"source_idx": source_idx
}
class CustomModel(nn.Module):
def __init__(self, model_name, config):
super().__init__()
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(
num_embeddings=1000,
embedding_dim=config.hidden_size,
padding_idx=-1
)
self.source_embedding = nn.Embedding(1000, config.hidden_size, padding_idx=-1)
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None:
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1)
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
outputs = self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
else:
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
return outputs
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
def generate(self, *args, **kwargs):
return self.base_model.generate(*args, **kwargs)
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels")
source_idx = inputs.pop("source_idx", None)
outputs = model(input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
labels=labels,
source_idx=source_idx)
return (outputs.loss, outputs) if return_outputs else outputs.loss
def main():
# Inicjalizacja
source_mapper = SourceMapper()
model_name = "crumb/nano-mistral"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# Inicjalizacja komponentów
source_mapper = SourceMapper()
model_name = "crumb/nano-mistral"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie danych
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path, source_mapper)
dataset = Dataset.from_list(data)
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
# Przygotowanie danych
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path, source_mapper)
dataset = Dataset.from_list(data)
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
# Model
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = CustomModel(model_name, config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Inicjalizacja modelu
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = CustomModel(model_name, config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Trening
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=1,
save_strategy="steps",
save_steps=1000,
report_to="none"
)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=1,
save_strategy="steps",
save_steps=1000,
logging_strategy="no",
report_to="none"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=custom_collate_fn,
)
print("Rozpoczęcie treningu...")
trainer.train()
# Trening
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=custom_collate_fn,
)
trainer.train()
# Funkcja testująca
def generate_answer_with_source(question, model, tokenizer, source_mapper, max_length=200):
device = next(model.parameters()).device
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
# Testowanie
def generate_answer(question):
inputs = tokenizer(question, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2,
no_repeat_ngram_size=2,
pad_token_id=tokenizer.eos_token_id
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Wyszukiwanie źródeł
sources = set()
for idx in source_mapper.idx_to_source:
if source_mapper.idx_to_source[idx] in answer:
sources.add(source_mapper.idx_to_source[idx])
return {
"question": question,
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"]
}
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.replace(question, "").strip()
sources = set()
for match in re.finditer(r'Art\.\s+\d+', answer):
article_ref = match.group(0).strip()
for idx, source in source_mapper.idx_to_source.items():
if article_ref in source:
sources.add(source)
return {
"question": question,
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"]
}
# Testowanie
test_questions = [
"Jak brzmi art. 154 kodeksu pracy?"
]
# Przykładowe testy
test_questions = [
"Jakie są zasady udzielania urlopu wypoczynkowego?",
"Co mówi art. 154 kodeksu pracy?",
"Jakie są obowiązki pracodawcy w zakresie BHP?"
]
print("\n" + "="*50 + "\nWYNIKI TESTOW\n" + "="*50)
for question in test_questions:
result = generate_answer(question)
print(f"\nPYTANIE: {result['question']}")
print(f"ODPOWIEDŹ: {result['answer'][:500]}")
print(f"ŹRÓDŁA: {', '.join(result['sources'])}")
print("-"*80)
print("\n=== TEST MODELU ===")
for question in test_questions:
result = generate_answer_with_source(question, model, tokenizer, source_mapper)
print(f"\nPytanie: {result['question']}")
print(f"Odpowiedź: {result['answer']}")
print(f"Źródła: {', '.join(result['sources'])}")
print("="*80)
# Zapis modelu
save_directory = "./trained_model"
os.makedirs(save_directory, exist_ok=True)
torch.save(model.state_dict(), os.path.join(save_directory, "model.bin"))
tokenizer.save_pretrained(save_directory)
if __name__ == "__main__":
main()