mod
This commit is contained in:
parent
4ac8c40417
commit
b4957ee652
|
|
@ -0,0 +1,95 @@
|
|||
import os
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
||||
from datasets import Dataset
|
||||
from collections import defaultdict
|
||||
|
||||
# Konfiguracja
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
MODEL_NAME = "gpt2" # Tymczasowo używamy mniejszego modelu do testów
|
||||
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
||||
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
||||
self.idx_to_source = {}
|
||||
|
||||
def add_source(self, source):
|
||||
if source not in self.source_to_idx:
|
||||
idx = self.source_to_idx[source]
|
||||
self.idx_to_source[idx] = source
|
||||
|
||||
def prepare_simple_dataset():
|
||||
# Przykładowe dane - zastąp rzeczywistymi danymi
|
||||
return [
|
||||
{
|
||||
"text": "[CITATION_START] Kodeks Pracy, Art. 1 [CITATION_END] Tekst artykułu...",
|
||||
"source_idx": 0
|
||||
},
|
||||
{
|
||||
"text": "[CITATION_START] Kodeks Pracy, Art. 2 [CITATION_END] Inny tekst...",
|
||||
"source_idx": 1
|
||||
}
|
||||
]
|
||||
|
||||
def main():
|
||||
# Inicjalizacja
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Przygotowanie danych
|
||||
source_mapper = SourceMapper()
|
||||
data = prepare_simple_dataset()
|
||||
|
||||
# Tworzenie datasetu
|
||||
dataset = Dataset.from_dict({
|
||||
"text": [d["text"] for d in data],
|
||||
"source_idx": [d["source_idx"] for d in data]
|
||||
})
|
||||
|
||||
# Tokenizacja
|
||||
def tokenize_function(examples):
|
||||
tokenized = tokenizer(
|
||||
examples["text"],
|
||||
truncation=True,
|
||||
padding="max_length",
|
||||
max_length=128,
|
||||
return_tensors="pt"
|
||||
)
|
||||
return {
|
||||
"input_ids": tokenized["input_ids"].squeeze(),
|
||||
"attention_mask": tokenized["attention_mask"].squeeze(),
|
||||
"labels": tokenized["input_ids"].squeeze().clone(),
|
||||
}
|
||||
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
||||
|
||||
# Model
|
||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=1,
|
||||
per_device_train_batch_size=2,
|
||||
gradient_accumulation_steps=1,
|
||||
learning_rate=2e-5,
|
||||
logging_steps=1,
|
||||
remove_unused_columns=False
|
||||
)
|
||||
|
||||
# Trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
)
|
||||
|
||||
# Rozpoczęcie treningu
|
||||
print("Rozpoczęcie treningu...")
|
||||
trainer.train()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
75
hft.py
75
hft.py
|
|
@ -17,22 +17,19 @@ os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
|||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
login(token="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")
|
||||
|
||||
CITATION_START = "▌▌CITATION_START"
|
||||
CITATION_END = "▌▌CITATION_END"
|
||||
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
||||
self.idx_to_source = {}
|
||||
|
||||
|
||||
def add_source(self, source):
|
||||
if source and source not in self.source_to_idx:
|
||||
idx = self.source_to_idx[source]
|
||||
self.idx_to_source[idx] = source
|
||||
|
||||
|
||||
def get_idx(self, source):
|
||||
return self.source_to_idx[source] if source else -1
|
||||
|
||||
|
||||
def get_source(self, idx):
|
||||
return self.idx_to_source.get(idx, "Unknown")
|
||||
|
||||
|
|
@ -99,26 +96,8 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
doc_type = identify_legal_document(file, file_catalog)
|
||||
print(f"Rozpoznany typ dokumentu: {doc_type}")
|
||||
|
||||
current_section = ""
|
||||
current_chapter = ""
|
||||
|
||||
structure_matches = re.finditer(
|
||||
r'(DZIAŁ [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|Rozdział|DZIAŁ|$)'
|
||||
r'|(Rozdział [A-ZĄĆĘŁŃÓŚŹŻ]+)\n+(.*?)\n(?=Art\.|DZIAŁ|$)',
|
||||
text
|
||||
)
|
||||
for match in structure_matches:
|
||||
if match.group(1):
|
||||
current_section = f"{match.group(1)} - {match.group(2).strip()}"
|
||||
current_chapter = ""
|
||||
else:
|
||||
current_chapter = f"{match.group(3)} - {match.group(4).strip()}"
|
||||
|
||||
if doc_type != "Opracowanie własne":
|
||||
articles = re.split(
|
||||
r'(?i)(Art[\.\s]+\d+[a-z]*(?:[\s§\.-]\d+)*)\.?\s*',
|
||||
text
|
||||
)
|
||||
articles = re.split(r'(?i)(Art[\.\s]+\d+[\.\s]?)', text)
|
||||
articles = [a.strip() for a in articles if a.strip()]
|
||||
|
||||
print(f"Znaleziono {len(articles)} fragmentów")
|
||||
|
|
@ -130,20 +109,10 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
if len(article_content) < 50:
|
||||
continue
|
||||
|
||||
citation_block = (
|
||||
f"{CITATION_START}\n"
|
||||
f"Dokument: {doc_type}\n"
|
||||
f"Artykuł: {article_number}\n"
|
||||
f"Sekcja: {current_section}\n"
|
||||
f"Rozdział: {current_chapter}\n"
|
||||
f"{CITATION_END}\n"
|
||||
f"{article_content}"
|
||||
)
|
||||
|
||||
source = f"{doc_type}, {article_number}"
|
||||
source_mapper.add_source(source)
|
||||
data.append({
|
||||
"text": citation_block,
|
||||
"text": f"{article_number} {article_content}",
|
||||
"source_idx": source_mapper.get_idx(source)
|
||||
})
|
||||
else:
|
||||
|
|
@ -173,15 +142,11 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
return data
|
||||
|
||||
class CustomModel(nn.Module):
|
||||
def __init__(self, model_name, tokenizer):
|
||||
def __init__(self, model_name, config):
|
||||
super().__init__()
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
||||
self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1)
|
||||
|
||||
tokenizer.add_special_tokens({'additional_special_tokens': [CITATION_START, CITATION_END]})
|
||||
self.base_model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
for param in self.base_model.parameters():
|
||||
param.requires_grad = False
|
||||
for param in self.base_model.get_output_embeddings().parameters():
|
||||
|
|
@ -210,10 +175,20 @@ class CustomModel(nn.Module):
|
|||
|
||||
class CustomDataCollator(DataCollatorForLanguageModeling):
|
||||
def torch_call(self, examples):
|
||||
batch = super().torch_call(examples)
|
||||
# Przetwórz podstawowe pola
|
||||
input_ids = torch.stack([torch.tensor(ex["input_ids"]) for ex in examples])
|
||||
attention_mask = torch.stack([torch.tensor(ex["attention_mask"]) for ex in examples])
|
||||
labels = torch.stack([torch.tensor(ex["labels"]) for ex in examples])
|
||||
|
||||
batch = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"labels": labels
|
||||
}
|
||||
|
||||
# Dodaj source_idx jeśli istnieje
|
||||
if "source_idx" in examples[0]:
|
||||
source_idx = torch.stack([ex["source_idx"] for ex in examples])
|
||||
source_idx = torch.stack([torch.tensor(ex["source_idx"]) for ex in examples])
|
||||
batch["source_idx"] = source_idx
|
||||
|
||||
return batch
|
||||
|
|
@ -221,10 +196,10 @@ class CustomDataCollator(DataCollatorForLanguageModeling):
|
|||
def main():
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "crumb/nano-mistral"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
|
||||
# Przygotowanie danych
|
||||
catalog_path = "catalog.json"
|
||||
data = prepare_dataset("docs", catalog_path, source_mapper)
|
||||
|
||||
|
|
@ -232,8 +207,10 @@ def main():
|
|||
print("\nBrak danych do treningu!")
|
||||
return
|
||||
|
||||
#dataset = Dataset.from_list(data)
|
||||
dataset = Dataset.from_dict({k: [d[k] for d in data] for k in data[0]})
|
||||
|
||||
|
||||
def tokenize_function(examples):
|
||||
tokenized = tokenizer(
|
||||
examples["text"],
|
||||
|
|
@ -242,19 +219,17 @@ def main():
|
|||
max_length=512,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
source_idx = torch.tensor(examples["source_idx"], dtype=torch.long)
|
||||
|
||||
return {
|
||||
"input_ids": tokenized["input_ids"].squeeze(),
|
||||
"attention_mask": tokenized["attention_mask"].squeeze(),
|
||||
"labels": tokenized["input_ids"].squeeze().clone(),
|
||||
"source_idx": source_idx
|
||||
"source_idx": examples["source_idx"] # Dodano bez konwersji do tensora
|
||||
}
|
||||
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)
|
||||
|
||||
model = CustomModel(model_name, tokenizer)
|
||||
model = CustomModel(model_name, AutoModelForCausalLM.from_pretrained(model_name).config)
|
||||
model.source_mapper = source_mapper
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue