mod gemma
This commit is contained in:
parent
30a6350071
commit
b822c32206
45
gemma.py
45
gemma.py
|
|
@ -1,10 +1,13 @@
|
|||
import os
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
import torch
|
||||
import faiss
|
||||
import numpy as np
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from datasets import Dataset
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||
|
||||
# 1️⃣ Inicjalizacja modelu do embeddingów
|
||||
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
|
|
@ -19,13 +22,12 @@ documents = [
|
|||
embeddings = embed_model.encode(documents)
|
||||
|
||||
# 3️⃣ Inicjalizacja FAISS i dodanie wektorów
|
||||
dim = embeddings.shape[1] # Wymiary wektorów
|
||||
index = faiss.IndexFlatL2(dim) # Tworzymy indeks FAISS dla metryki L2
|
||||
index.add(np.array(embeddings, dtype=np.float32)) # Dodajemy wektory do indeksu FAISS
|
||||
dim = embeddings.shape[1]
|
||||
index = faiss.IndexFlatL2(dim)
|
||||
index.add(np.array(embeddings, dtype=np.float32))
|
||||
|
||||
# 4️⃣ Przygotowanie danych treningowych
|
||||
def create_training_data():
|
||||
# Pobranie dokumentów (możesz połączyć je z odpowiednimi embeddingami, jeśli trzeba)
|
||||
data = {
|
||||
"text": documents,
|
||||
"embedding": embeddings.tolist()
|
||||
|
|
@ -47,8 +49,15 @@ lora_config = LoraConfig(
|
|||
model = get_peft_model(model, lora_config)
|
||||
|
||||
# 7️⃣ Tokenizacja danych
|
||||
max_length = 128
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
||||
return tokenizer(
|
||||
examples["text"],
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_length
|
||||
)
|
||||
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
||||
|
||||
|
|
@ -56,22 +65,36 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
|||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
per_device_train_batch_size=2,
|
||||
num_train_epochs=3,
|
||||
gradient_accumulation_steps=4, # Symuluje większy batch size
|
||||
num_train_epochs=5,
|
||||
logging_dir="./logs",
|
||||
save_strategy="epoch"
|
||||
save_strategy="epoch",
|
||||
learning_rate=2e-5,
|
||||
warmup_steps=100,
|
||||
fp16=True, # Używa mixed precision training
|
||||
evaluation_strategy="steps",
|
||||
eval_steps=500,
|
||||
load_best_model_at_end=True,
|
||||
)
|
||||
|
||||
# 9️⃣ Trening modelu
|
||||
# 9️⃣ Data Collator
|
||||
data_collator = DataCollatorForLanguageModeling(
|
||||
tokenizer=tokenizer,
|
||||
mlm=False
|
||||
)
|
||||
|
||||
# 🔟 Trening modelu
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=data_collator,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# 🔟 Zapisanie dostrojonego modelu
|
||||
# 1️⃣1️⃣ Zapisanie dostrojonego modelu
|
||||
model.save_pretrained("./trained_model/gemma")
|
||||
tokenizer.save_pretrained("./trained_model/gemma")
|
||||
|
||||
print("✅ Model został wytrenowany i zapisany!")
|
||||
print("✅ Model został wytrenowany i zapisany!")
|
||||
|
|
|
|||
Loading…
Reference in New Issue