testowanie
This commit is contained in:
parent
f5e5cab0bb
commit
b8d28ec055
37
hft.py
37
hft.py
|
|
@ -190,22 +190,20 @@ trainer = CustomTrainer(
|
|||
trainer.train()
|
||||
|
||||
# Funkcja generująca odpowiedź
|
||||
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
||||
|
||||
outputs = model.base_model.generate(
|
||||
**inputs,
|
||||
max_length=max_length,
|
||||
num_return_sequences=1,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
)
|
||||
def generate_answer(question, max_length=200):
|
||||
model.eval()
|
||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_length=max_length,
|
||||
num_return_sequences=1,
|
||||
return_dict_in_generate=True
|
||||
)
|
||||
|
||||
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
||||
|
||||
# Pobierz źródło z ostatniego tokena
|
||||
last_token_id = outputs.sequences[0][-1].item()
|
||||
source_idx = model.source_embeddi
|
||||
return answer
|
||||
|
||||
# Utwórz katalog do zapisu modelu
|
||||
save_directory = "./trained_model/ably.do/hse"
|
||||
|
|
@ -227,4 +225,13 @@ with open(os.path.join(save_directory, "source_mapper.json"), 'w') as f:
|
|||
json.dump(source_mapper_data, f)
|
||||
|
||||
# 4. Zapisz konfigurację modelu (opcjonalnie, ale zalecane)
|
||||
model.base_model.config.save_pretrained(save_directory)
|
||||
model.base_model.config.save_pretrained(save_directory)
|
||||
|
||||
# Przeprowadź testy
|
||||
test_questions = [
|
||||
"Ile dni urlopu przysługuje pracownikowi, który przepracował w pełnym wymiarze pracy 5 lat?"
|
||||
]
|
||||
|
||||
for q in test_questions:
|
||||
print(f"Pytanie: {q}")
|
||||
print(f"Odpowiedź: {generate_answer(q)}\n{'='*50}")
|
||||
Loading…
Reference in New Issue