Poprawka fukcji uzycia

This commit is contained in:
l.gabrysiak 2025-02-25 18:16:51 +01:00
parent 37d386ca0b
commit ccc2af5185
1 changed files with 32 additions and 45 deletions

75
hft.py
View File

@ -107,12 +107,11 @@ def tokenize_function(examples):
return tokenized return tokenized
def custom_collate_fn(batch): def custom_collate_fn(batch):
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch]) device = next(model.parameters()).device
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch]) input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch]).to(device)
labels = torch.stack([torch.tensor(b["labels"]) for b in batch]) attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch]).to(device)
labels = torch.stack([torch.tensor(b["labels"]) for b in batch]).to(device)
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long) source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long).to(device)
#print("source_idx shape:", source_idx.shape) # Debugowanie
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx} return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
class CustomModel(nn.Module): class CustomModel(nn.Module):
@ -127,8 +126,6 @@ class CustomModel(nn.Module):
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs): def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None: if source_idx is not None:
#print("Max source_idx:", torch.max(source_idx))
#print("Num embeddings:", self.source_embedding.num_embeddings)
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1) source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1)
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1) source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
hidden_states = self.base_model.get_input_embeddings()(input_ids) + source_embeds hidden_states = self.base_model.get_input_embeddings()(input_ids) + source_embeds
@ -146,6 +143,27 @@ class CustomTrainer(Trainer):
loss = outputs.loss loss = outputs.loss
return (loss, outputs) if return_outputs else loss return (loss, outputs) if return_outputs else loss
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.base_model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True,
output_scores=True,
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
# Pobierz źródło z ostatniego tokena
last_token_id = outputs.sequences[0][-1].item()
source_idx = model.source_embedding.weight.shape[0] - 1
source = source_mapper.get_source(source_idx)
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
# Inicjalizacja komponentów # Inicjalizacja komponentów
source_mapper = SourceMapper() source_mapper = SourceMapper()
model_name = "crumb/nano-mistral" model_name = "crumb/nano-mistral"
@ -160,9 +178,9 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
# Inicjalizacja modelu # Inicjalizacja modelu
config = AutoModelForCausalLM.from_pretrained(model_name).config config = AutoModelForCausalLM.from_pretrained(model_name).config
#print("Vocabulary size:", config.vocab_size)
model = CustomModel(model_name, config) model = CustomModel(model_name, config)
#model.to("cpu") # Zmienione na CPU dla debugowania device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Konfiguracja treningu # Konfiguracja treningu
training_args = TrainingArguments( training_args = TrainingArguments(
@ -171,7 +189,7 @@ training_args = TrainingArguments(
per_device_train_batch_size=2, per_device_train_batch_size=2,
gradient_accumulation_steps=4, gradient_accumulation_steps=4,
learning_rate=2e-5, learning_rate=2e-5,
fp16=False, # Wyłączone dla CPU fp16=torch.cuda.is_available(),
logging_steps=1, logging_steps=1,
logging_dir="./logs", logging_dir="./logs",
save_strategy="steps", save_strategy="steps",
@ -189,40 +207,9 @@ trainer = CustomTrainer(
) )
trainer.train() trainer.train()
# Funkcja generująca odpowiedź # Przykładowe użycie
def generate_answer(question, model, tokenizer, source_mapper, max_length=200): model.eval()
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
outputs = model.base_model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True,
output_scores=True,
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
# Pobierz źródło z ostatniego tokena
last_token_id = outputs.sequences[0][-1].item()
source_idx = model.source_embeddi
# Po zakończeniu treningu modelu
# Przygotowanie niezbędnych komponentów
model.eval() # Przełącz model w tryb ewaluacji
model = model.to("cuda" if torch.cuda.is_available() else "cpu") # Przenieś model na GPU, jeśli jest dostępne
# Przykładowe pytanie
question = "Ile dni urlopu przysługuje pracownikowi?" question = "Ile dni urlopu przysługuje pracownikowi?"
# Generowanie odpowiedzi
answer = generate_answer(question, model, tokenizer, source_mapper) answer = generate_answer(question, model, tokenizer, source_mapper)
# Wyświetlenie wyniku
print("Pytanie:", question) print("Pytanie:", question)
print("Odpowiedź:", answer) print("Odpowiedź:", answer)