mod
This commit is contained in:
parent
7c24c381e0
commit
ce550ad79d
20
hft.py
20
hft.py
|
|
@ -15,7 +15,6 @@ from huggingface_hub import login
|
||||||
login(token="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")
|
login(token="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")
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
# Nowa klasa do zarządzania źródłami
|
|
||||||
class SourceMapper:
|
class SourceMapper:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
||||||
|
|
@ -119,7 +118,7 @@ class CustomModel(nn.Module):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
||||||
self.source_embedding = nn.Embedding(
|
self.source_embedding = nn.Embedding(
|
||||||
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
|
num_embeddings=1000,
|
||||||
embedding_dim=config.hidden_size,
|
embedding_dim=config.hidden_size,
|
||||||
padding_idx=-1
|
padding_idx=-1
|
||||||
)
|
)
|
||||||
|
|
@ -133,8 +132,9 @@ class CustomModel(nn.Module):
|
||||||
)
|
)
|
||||||
|
|
||||||
if source_idx is not None:
|
if source_idx is not None:
|
||||||
# Dodaj embedding źródła do logits
|
print("outputs.logits shape:", outputs.logits.shape)
|
||||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, outputs.logits.size(1), -1)
|
||||||
|
print("source_embeds shape:", source_embeds.shape)
|
||||||
outputs.logits += source_embeds
|
outputs.logits += source_embeds
|
||||||
|
|
||||||
return outputs
|
return outputs
|
||||||
|
|
@ -149,7 +149,7 @@ class CustomTrainer(Trainer):
|
||||||
|
|
||||||
# Inicjalizacja komponentów
|
# Inicjalizacja komponentów
|
||||||
source_mapper = SourceMapper()
|
source_mapper = SourceMapper()
|
||||||
model_name = "crumb/nano-mistral" #"google/gemma-2-2b"
|
model_name = "crumb/nano-mistral"
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
|
@ -162,6 +162,7 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
|
||||||
# Inicjalizacja modelu
|
# Inicjalizacja modelu
|
||||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||||
model = CustomModel(model_name, config)
|
model = CustomModel(model_name, config)
|
||||||
|
model.to("cpu")
|
||||||
|
|
||||||
# Konfiguracja treningu
|
# Konfiguracja treningu
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
|
|
@ -171,11 +172,10 @@ training_args = TrainingArguments(
|
||||||
gradient_accumulation_steps=4,
|
gradient_accumulation_steps=4,
|
||||||
learning_rate=2e-5,
|
learning_rate=2e-5,
|
||||||
fp16=True,
|
fp16=True,
|
||||||
logging_steps=1, # Częstsze logowanie
|
logging_steps=1,
|
||||||
logging_dir="./logs", # Katalog na logi
|
logging_dir="./logs",
|
||||||
save_strategy="steps",
|
save_strategy="steps",
|
||||||
save_steps=1000,
|
save_steps=1000,
|
||||||
#report_to="none"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Trening
|
# Trening
|
||||||
|
|
@ -183,7 +183,7 @@ trainer = CustomTrainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_dataset,
|
train_dataset=tokenized_dataset,
|
||||||
data_collator=custom_collate_fn, # Użyj niestandardowego collate_fn
|
data_collator=custom_collate_fn,
|
||||||
)
|
)
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
|
|
@ -211,4 +211,4 @@ def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||||
# Przykład użycia
|
# Przykład użycia
|
||||||
question = "Ile dni urlopu przysługuje pracownikowi?"
|
question = "Ile dni urlopu przysługuje pracownikowi?"
|
||||||
answer = generate_answer(question, model, tokenizer, source_mapper)
|
answer = generate_answer(question, model, tokenizer, source_mapper)
|
||||||
print(answer)
|
print(answer)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue