mod
This commit is contained in:
parent
7c24c381e0
commit
ce550ad79d
20
hft.py
20
hft.py
|
|
@ -15,7 +15,6 @@ from huggingface_hub import login
|
|||
login(token="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")
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
# Nowa klasa do zarządzania źródłami
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
||||
|
|
@ -119,7 +118,7 @@ class CustomModel(nn.Module):
|
|||
super().__init__()
|
||||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
||||
self.source_embedding = nn.Embedding(
|
||||
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
|
||||
num_embeddings=1000,
|
||||
embedding_dim=config.hidden_size,
|
||||
padding_idx=-1
|
||||
)
|
||||
|
|
@ -133,8 +132,9 @@ class CustomModel(nn.Module):
|
|||
)
|
||||
|
||||
if source_idx is not None:
|
||||
# Dodaj embedding źródła do logits
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
||||
print("outputs.logits shape:", outputs.logits.shape)
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, outputs.logits.size(1), -1)
|
||||
print("source_embeds shape:", source_embeds.shape)
|
||||
outputs.logits += source_embeds
|
||||
|
||||
return outputs
|
||||
|
|
@ -149,7 +149,7 @@ class CustomTrainer(Trainer):
|
|||
|
||||
# Inicjalizacja komponentów
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "crumb/nano-mistral" #"google/gemma-2-2b"
|
||||
model_name = "crumb/nano-mistral"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
|
|
@ -162,6 +162,7 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
|
|||
# Inicjalizacja modelu
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel(model_name, config)
|
||||
model.to("cpu")
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
|
|
@ -171,11 +172,10 @@ training_args = TrainingArguments(
|
|||
gradient_accumulation_steps=4,
|
||||
learning_rate=2e-5,
|
||||
fp16=True,
|
||||
logging_steps=1, # Częstsze logowanie
|
||||
logging_dir="./logs", # Katalog na logi
|
||||
logging_steps=1,
|
||||
logging_dir="./logs",
|
||||
save_strategy="steps",
|
||||
save_steps=1000,
|
||||
#report_to="none"
|
||||
)
|
||||
|
||||
# Trening
|
||||
|
|
@ -183,7 +183,7 @@ trainer = CustomTrainer(
|
|||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=custom_collate_fn, # Użyj niestandardowego collate_fn
|
||||
data_collator=custom_collate_fn,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
|
|
@ -211,4 +211,4 @@ def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
|||
# Przykład użycia
|
||||
question = "Ile dni urlopu przysługuje pracownikowi?"
|
||||
answer = generate_answer(question, model, tokenizer, source_mapper)
|
||||
print(answer)
|
||||
print(answer)
|
||||
|
|
|
|||
Loading…
Reference in New Issue