This commit is contained in:
l.gabrysiak 2025-02-25 21:52:06 +01:00
parent 3361683ac0
commit d5049b651c
1 changed files with 82 additions and 130 deletions

212
hft.py
View File

@ -11,12 +11,11 @@ import pytesseract
from PIL import Image from PIL import Image
from collections import defaultdict from collections import defaultdict
from huggingface_hub import login from huggingface_hub import login
from torch.utils.data import DataLoader
# Konfiguracja # Konfiguracja
os.environ['TORCH_USE_CUDA_DSA'] = '1' os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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") # Zastąp swoim tokenem login(token="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")
class SourceMapper: class SourceMapper:
def __init__(self): def __init__(self):
@ -98,39 +97,39 @@ def prepare_dataset(directory, catalog_path, source_mapper):
print(f"Rozpoznany typ dokumentu: {doc_type}") print(f"Rozpoznany typ dokumentu: {doc_type}")
if doc_type != "Opracowanie własne": if doc_type != "Opracowanie własne":
# Ulepszone wyrażenie regularne dla różnych formatów articles = re.split(r'(?i)(Art[\.\s]+\d+[\.\s]?)', text)
articles = re.split(r'(?i)(Art[^\S\n]*\.?[^\S\n]*\d+[^\S\n]*\.?)', text)
articles = [a.strip() for a in articles if a.strip()] articles = [a.strip() for a in articles if a.strip()]
print(f"Znaleziono {len(articles)//2} artykułów") print(f"Znaleziono {len(articles)} fragmentów")
# Generowanie większej liczby przykładów
for i in range(0, len(articles)-1, 2): for i in range(0, len(articles)-1, 2):
article_number = articles[i] for chunk_size in [256, 512, 1024]: # Różne rozmiary chunków
article_content = articles[i+1] article_number = articles[i]
article_content = articles[i+1]
if len(article_content) < 50:
print(f"Pominięto zbyt krótki artykuł: {article_number}")
continue
source = f"{doc_type}, {article_number}" chunks = [article_content[j:j+chunk_size] for j in range(0, len(article_content), chunk_size//2)]
print(f"Dodano artykuł: {source}") chunks = [c for c in chunks if len(c) > 100]
source_mapper.add_source(source) for chunk in chunks:
data.append({ source = f"{doc_type}, {article_number}"
"text": f"{article_number} {article_content}", source_mapper.add_source(source)
"source_idx": source_mapper.get_idx(source) data.append({
}) "text": f"{article_number} {chunk}",
"source_idx": source_mapper.get_idx(source)
})
else: else:
clean_text = re.sub(r'\s+', ' ', text).strip() clean_text = re.sub(r'\s+', ' ', text).strip()
chunks = [clean_text[i:i+512] for i in range(0, len(clean_text), 512)] for chunk_size in [256, 512, 768]: # Trzy różne rozmiary
chunks = [c for c in chunks if c.strip()] chunks = [clean_text[i:i+chunk_size] for i in range(0, len(clean_text), chunk_size//2)]
chunks = [c for c in chunks if c.strip()]
for chunk in chunks:
data.append({ for chunk in chunks:
"text": chunk, data.append({
"source_idx": -1 "text": chunk,
}) "source_idx": -1
print(f"Dodano {len(chunks)} chunków") })
print(f"Dodano {len(chunks)*3} chunków")
except Exception as e: except Exception as e:
print(f"Błąd podczas przetwarzania pliku: {str(e)}") print(f"Błąd podczas przetwarzania pliku: {str(e)}")
@ -150,44 +149,32 @@ class CustomModel(nn.Module):
def __init__(self, model_name, config): def __init__(self, model_name, config):
super().__init__() super().__init__()
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config) self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(1000, config.hidden_size, padding_idx=-1) self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1)
# Zamrożenie warstw bazowego modelu # Fine-tuning części modelu
for param in self.base_model.parameters(): for param in self.base_model.parameters():
param.requires_grad = False param.requires_grad = False
for param in self.base_model.get_output_embeddings().parameters(): for param in self.base_model.get_output_embeddings().parameters():
param.requires_grad = True param.requires_grad = True
for param in self.base_model.get_input_embeddings().parameters():
param.requires_grad = True
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs): def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None: if source_idx is not None:
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1) valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(valid_indices).unsqueeze(1)
source_embeds = torch.nn.functional.normalize(
self.source_embedding(valid_indices),
p=2,
dim=-1
).unsqueeze(1)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
return self.base_model( return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
**kwargs
)
return self.base_model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
**kwargs
)
def generate(self, *args, **kwargs): def generate(self, *args, **kwargs):
return self.base_model.generate(*args, **kwargs) return self.base_model.generate(*args, **kwargs)
class CustomTrainer(Trainer): class CustomTrainer(Trainer):
def __init__(self, *args, **kwargs):
self.tokenizer = kwargs.pop('tokenizer', None)
super().__init__(*args, **kwargs)
def compute_loss(self, model, inputs, return_outputs=False, **kwargs): def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels") labels = inputs.pop("labels")
source_idx = inputs.pop("source_idx", None) source_idx = inputs.pop("source_idx", None)
@ -195,72 +182,54 @@ class CustomTrainer(Trainer):
return (outputs.loss, outputs) if return_outputs else outputs.loss return (outputs.loss, outputs) if return_outputs else outputs.loss
def evaluate(self): def evaluate(self):
val_questions = { questions = [
"art1": "Jakie są prawa pracownika według art. 1?", "Jakie są prawa pracownika według art. 1?",
"art2": "Kto jest pracownikiem według art. 2?", "Kto jest pracownikiem według art. 2?",
"art3": "Jakie są obowiązki pracodawcy według art. 3?" "Jakie są obowiązki pracodawcy według art. 3?"
} ]
model.eval() print("\n" + "="*50 + "\nEWALUACJA\n" + "="*50)
results = {} for q in questions:
result = self.generate_answer(q)
for key, question in val_questions.items(): print(f"\nPYTANIE: {q}")
result = self.generate_answer(question) print(f"ODPOWIEDŹ: {result['answer'][:500]}")
results[key] = result print(f"ŹRÓDŁA: {', '.join(result['sources'])}")
print("-"*80)
print("\nWyniki walidacji:")
for key, val in results.items():
print(f"\n{val_questions[key]}")
print(f"Odpowiedź: {val['answer'][:200]}...")
print(f"Źródła: {val['sources']}")
return {"loss": 0.0} return {"loss": 0.0}
def generate_answer(self, question): def generate_answer(self, question):
tokenizer = self.tokenizer inputs = self.tokenizer(
model = self.model f"[PYTANIE] {question} [KONTEKST]",
device = model.base_model.device
prompt = f"[PYTANIE PRAWNE] {question} [KONTEKST]"
inputs = tokenizer(
prompt,
return_tensors="pt", return_tensors="pt",
truncation=True, truncation=True,
max_length=512 max_length=512
).to(device) ).to(self.model.base_model.device)
with torch.no_grad(): with torch.no_grad():
outputs = model.generate( outputs = self.model.generate(
**inputs, **inputs,
max_new_tokens=150, max_new_tokens=200,
temperature=0.3, temperature=0.5,
top_k=50, top_p=0.9,
top_p=0.95, repetition_penalty=2.0,
repetition_penalty=1.8,
num_beams=3, num_beams=3,
no_repeat_ngram_size=4, no_repeat_ngram_size=3
early_stopping=True,
pad_token_id=tokenizer.eos_token_id
) )
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.replace(prompt, "").strip() answer = answer.split("[KONTEKST]")[-1].strip()
sources = set() sources = set()
for match in re.finditer(r'(?i)art\.?\s*\d+\.?', answer): for match in re.finditer(r'(?i)art\.?\s*\d+', answer):
article_ref = match.group(0).strip().rstrip('.') article_ref = match.group(0).strip()
for source in self.model.source_mapper.idx_to_source.values(): for idx, source in self.model.source_mapper.idx_to_source.items():
if article_ref.lower() in source.lower(): if article_ref.lower() in source.lower():
sources.add(source) sources.add(source)
return { return {"answer": answer, "sources": list(sources)}
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"]
}
def main(): def main():
# Inicjalizacja
source_mapper = SourceMapper() source_mapper = SourceMapper()
model_name = "crumb/nano-mistral" model_name = "crumb/nano-mistral"
tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
@ -271,70 +240,53 @@ def main():
data = prepare_dataset("files", catalog_path, source_mapper) data = prepare_dataset("files", catalog_path, source_mapper)
if not data: if not data:
print("\nBrak danych do treningu! Sprawdź pliki w katalogu 'files' i diagnostykę powyżej.") print("\nBrak danych do treningu!")
return return
dataset = Dataset.from_list(data) dataset = Dataset.from_list(data)
def tokenize_function(examples): def tokenize(examples):
tokenized = tokenizer( return tokenizer(
examples["text"], examples["text"],
truncation=True, truncation=True,
padding="max_length", padding="max_length",
max_length=512, max_length=512,
return_tensors="pt" return_tensors="pt"
) )
return {
"input_ids": tokenized["input_ids"][0], tokenized_dataset = dataset.map(tokenize, batched=True, batch_size=16)
"attention_mask": tokenized["attention_mask"][0],
"labels": tokenized["input_ids"][0].clone(),
"source_idx": examples["source_idx"]
}
tokenized_dataset = dataset.map(tokenize_function, batched=False)
def custom_collate_fn(features):
return {
"input_ids": torch.stack([torch.tensor(f["input_ids"]) for f in features]),
"attention_mask": torch.stack([torch.tensor(f["attention_mask"]) for f in features]),
"labels": torch.stack([torch.tensor(f["labels"]) for f in features]),
"source_idx": torch.tensor([f["source_idx"] for f in features], dtype=torch.long)
}
# Model
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = CustomModel(model_name, config)
model.source_mapper = source_mapper # Dodanie mapowania źródeł do modelu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Trening
training_args = TrainingArguments( training_args = TrainingArguments(
output_dir="./results", output_dir="./results",
num_train_epochs=5, num_train_epochs=8,
per_device_train_batch_size=4, per_device_train_batch_size=4,
gradient_accumulation_steps=2, gradient_accumulation_steps=8,
learning_rate=1e-5, learning_rate=5e-6,
weight_decay=0.01, weight_decay=0.01,
warmup_ratio=0.1, warmup_ratio=0.1,
fp16=torch.cuda.is_available(), fp16=torch.cuda.is_available(),
logging_steps=10, logging_steps=50,
save_strategy="epoch", save_strategy="epoch",
evaluation_strategy="steps", eval_strategy="no",
eval_steps=500,
report_to="none", report_to="none",
remove_unused_columns=False remove_unused_columns=False
) )
model = CustomModel(model_name, AutoModelForCausalLM.from_pretrained(model_name).config)
model.source_mapper = source_mapper
model.to("cuda" if torch.cuda.is_available() else "cpu")
trainer = CustomTrainer( trainer = CustomTrainer(
model=model, model=model,
args=training_args, args=training_args,
train_dataset=tokenized_dataset, train_dataset=tokenized_dataset,
data_collator=custom_collate_fn,
tokenizer=tokenizer tokenizer=tokenizer
) )
print("\nRozpoczęcie treningu...") print("\nRozpoczęcie treningu...")
trainer.train() trainer.train()
print("\nKońcowa ewaluacja...")
trainer.evaluate() trainer.evaluate()
if __name__ == "__main__": if __name__ == "__main__":