mod
This commit is contained in:
parent
9e3ff6db7f
commit
e068a27261
49
hft.py
49
hft.py
|
|
@ -145,28 +145,6 @@ class CustomTrainer(Trainer):
|
||||||
loss = outputs.loss
|
loss = outputs.loss
|
||||||
return (loss, outputs) if return_outputs else loss
|
return (loss, outputs) if return_outputs else loss
|
||||||
|
|
||||||
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
|
||||||
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
||||||
|
|
||||||
outputs = model.base_model.generate(
|
|
||||||
**inputs,
|
|
||||||
max_length=max_length,
|
|
||||||
num_return_sequences=1,
|
|
||||||
return_dict_in_generate=True,
|
|
||||||
output_scores=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
|
||||||
|
|
||||||
# Pobierz źródło z ostatniego tokena
|
|
||||||
last_token_id = outputs.sequences[0][-1].item()
|
|
||||||
source_idx = model.source_embedding.weight.shape[0] - 1
|
|
||||||
source = source_mapper.get_source(source_idx)
|
|
||||||
|
|
||||||
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
|
|
||||||
|
|
||||||
# Inicjalizacja komponentów
|
# Inicjalizacja komponentów
|
||||||
source_mapper = SourceMapper()
|
source_mapper = SourceMapper()
|
||||||
model_name = "crumb/nano-mistral"
|
model_name = "crumb/nano-mistral"
|
||||||
|
|
@ -210,9 +188,28 @@ trainer = CustomTrainer(
|
||||||
)
|
)
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
# Przykładowe użycie
|
# Funkcja generująca odpowiedź
|
||||||
model.eval()
|
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||||
|
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
||||||
|
|
||||||
|
outputs = model.generate(
|
||||||
|
**inputs,
|
||||||
|
max_length=max_length,
|
||||||
|
num_return_sequences=1,
|
||||||
|
return_dict_in_generate=True,
|
||||||
|
output_scores=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
||||||
|
|
||||||
|
# Pobierz źródło z ostatniego tokena
|
||||||
|
last_token_id = outputs.sequences[0][-1].item()
|
||||||
|
source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie
|
||||||
|
source = source_mapper.get_source(source_idx)
|
||||||
|
|
||||||
|
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
|
||||||
|
|
||||||
|
# Przykład użycia
|
||||||
question = "Ile dni urlopu przysługuje pracownikowi?"
|
question = "Ile dni urlopu przysługuje pracownikowi?"
|
||||||
answer = generate_answer(question, model, tokenizer, source_mapper)
|
answer = generate_answer(question, model, tokenizer, source_mapper)
|
||||||
print("Pytanie:", question)
|
print(answer)
|
||||||
print("Odpowiedź:", answer)
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue