powrót do gemma2
This commit is contained in:
parent
7179a2de95
commit
eb1f2229f0
109
hft.py
109
hft.py
|
|
@ -1,7 +1,7 @@
|
||||||
import os
|
import os
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from transformers import GPTNeoForCausalLM, Trainer, TrainingArguments, AutoTokenizer, AutoModelForCausalLM
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
||||||
from datasets import Dataset
|
from datasets import Dataset
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import re
|
import re
|
||||||
|
|
@ -9,36 +9,28 @@ import pytesseract
|
||||||
import docx2txt
|
import docx2txt
|
||||||
import PyPDF2
|
import PyPDF2
|
||||||
import json
|
import json
|
||||||
from torch.cuda.amp import autocast
|
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from huggingface_hub import login
|
from huggingface_hub import login
|
||||||
|
|
||||||
|
import torch
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
# Logowanie do Hugging Face Hub
|
|
||||||
login(token="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")
|
login(token="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")
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
|
||||||
|
|
||||||
def free_memory():
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
torch.cuda.ipc_collect()
|
|
||||||
|
|
||||||
|
# Nowa klasa do zarządzania źródłami
|
||||||
class SourceMapper:
|
class SourceMapper:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.source_to_idx = defaultdict(lambda: 0) # Domyślnie 0 dla nieznanych
|
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
||||||
self.idx_to_source = {0: "Unknown"}
|
self.idx_to_source = {}
|
||||||
self.next_idx = 1 # Indeksy od 1 dla znanych źródeł
|
|
||||||
|
|
||||||
def add_source(self, source):
|
def add_source(self, source):
|
||||||
if source and source not in self.source_to_idx:
|
if source and source not in self.source_to_idx:
|
||||||
idx = self.next_idx
|
idx = self.source_to_idx[source]
|
||||||
self.source_to_idx[source] = idx
|
|
||||||
self.idx_to_source[idx] = source
|
self.idx_to_source[idx] = source
|
||||||
self.next_idx += 1
|
|
||||||
|
|
||||||
def get_idx(self, source):
|
def get_idx(self, source):
|
||||||
return self.source_to_idx.get(source, 0)
|
return self.source_to_idx[source] if source else -1
|
||||||
|
|
||||||
def get_source(self, idx):
|
def get_source(self, idx):
|
||||||
return self.idx_to_source.get(idx, "Unknown")
|
return self.idx_to_source.get(idx, "Unknown")
|
||||||
|
|
@ -62,7 +54,7 @@ def extract_text_from_file(file_path):
|
||||||
with open(file_path, 'rb') as file:
|
with open(file_path, 'rb') as file:
|
||||||
reader = PyPDF2.PdfReader(file)
|
reader = PyPDF2.PdfReader(file)
|
||||||
for page in reader.pages:
|
for page in reader.pages:
|
||||||
text += page.extract_text() or ""
|
text += page.extract_text()
|
||||||
return text
|
return text
|
||||||
elif ext in ['.doc', '.docx']:
|
elif ext in ['.doc', '.docx']:
|
||||||
return docx2txt.process(file_path)
|
return docx2txt.process(file_path)
|
||||||
|
|
@ -84,7 +76,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
||||||
|
|
||||||
doc_type = identify_legal_document(file, file_catalog)
|
doc_type = identify_legal_document(file, file_catalog)
|
||||||
if doc_type != "Opracowanie własne":
|
if doc_type != "Opracowanie własne":
|
||||||
articles = re.split(r'(Art\.\s+\d+\.)', text)
|
articles = re.split(r'(Art\.\s+\d+[\.\s])', text)
|
||||||
for i in range(1, len(articles), 2):
|
for i in range(1, len(articles), 2):
|
||||||
article_number = articles[i].strip()
|
article_number = articles[i].strip()
|
||||||
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
||||||
|
|
@ -100,7 +92,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
||||||
for chunk in chunks:
|
for chunk in chunks:
|
||||||
data.append({
|
data.append({
|
||||||
"text": chunk,
|
"text": chunk,
|
||||||
"source_idx": 0
|
"source_idx": -1 # Brak źródła
|
||||||
})
|
})
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
@ -120,74 +112,85 @@ def custom_collate_fn(batch):
|
||||||
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
|
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
|
||||||
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
|
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
|
||||||
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
|
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
|
||||||
|
|
||||||
|
# Dodajemy domyślne source_idx, jeśli nie istnieje
|
||||||
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
|
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
|
||||||
|
|
||||||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
||||||
|
|
||||||
class CustomModel(GPTNeoForCausalLM):
|
class CustomModel(AutoModelForCausalLM):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
self.source_embedding = nn.Embedding(
|
self.source_embedding = nn.Embedding(
|
||||||
num_embeddings=1000,
|
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
|
||||||
embedding_dim=config.hidden_size,
|
embedding_dim=config.hidden_size,
|
||||||
padding_idx=0 # Poprawiony padding_idx
|
padding_idx=-1
|
||||||
)
|
)
|
||||||
self.source_proj = nn.Linear(config.hidden_size, config.vocab_size)
|
|
||||||
|
|
||||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||||
with autocast():
|
outputs = super().forward(
|
||||||
outputs = super().forward(
|
input_ids=input_ids,
|
||||||
input_ids=input_ids,
|
attention_mask=attention_mask,
|
||||||
attention_mask=attention_mask,
|
labels=labels,
|
||||||
labels=labels,
|
**kwargs
|
||||||
**kwargs
|
)
|
||||||
)
|
|
||||||
if source_idx is not None:
|
if source_idx is not None:
|
||||||
source_embeds = self.source_embedding(source_idx)
|
# Dodajemy embedding źródła do hidden states
|
||||||
source_projected = self.source_proj(source_embeds)
|
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
||||||
outputs.logits += source_projected.unsqueeze(1)
|
outputs.logits += source_embeds
|
||||||
|
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
|
class CustomTrainer(Trainer):
|
||||||
|
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||||
|
labels = inputs.pop("labels")
|
||||||
|
source_idx = inputs.pop("source_idx")
|
||||||
|
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
||||||
|
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
||||||
|
|
||||||
|
# Inicjalizacja komponentów
|
||||||
source_mapper = SourceMapper()
|
source_mapper = SourceMapper()
|
||||||
model_name = "EleutherAI/gpt-neo-1.3B"
|
model_name = "google/gemma-2-2b"
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
data = prepare_dataset("files", "file_catalog.json", source_mapper)
|
# Przygotowanie danych
|
||||||
|
catalog_path = "file_catalog.json"
|
||||||
|
data = prepare_dataset("files", catalog_path, source_mapper)
|
||||||
dataset = Dataset.from_list(data)
|
dataset = Dataset.from_list(data)
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)
|
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
|
||||||
|
|
||||||
|
# Inicjalizacja modelu
|
||||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||||
model = CustomModel.from_pretrained(model_name)
|
model = CustomModel.from_pretrained(model_name, config=config)
|
||||||
model.config.gradient_checkpointing = True
|
|
||||||
model.config.use_cache = False
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
model.gradient_checkpointing_enable()
|
model.gradient_checkpointing_enable()
|
||||||
|
|
||||||
|
# Konfiguracja treningu
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
num_train_epochs=3,
|
num_train_epochs=3,
|
||||||
gradient_accumulation_steps=8,
|
per_device_train_batch_size=2,
|
||||||
|
gradient_accumulation_steps=4,
|
||||||
learning_rate=2e-5,
|
learning_rate=2e-5,
|
||||||
fp16=True,
|
fp16=True,
|
||||||
logging_steps=50,
|
logging_steps=100,
|
||||||
save_strategy="steps",
|
save_strategy="steps",
|
||||||
save_steps=500,
|
save_steps=1000,
|
||||||
per_device_train_batch_size=2,
|
report_to="none",
|
||||||
per_device_eval_batch_size=2,
|
gradient_checkpointing=True
|
||||||
logging_dir='./logs'
|
|
||||||
)
|
)
|
||||||
|
|
||||||
trainer = Trainer(
|
# Trening
|
||||||
|
trainer = CustomTrainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_dataset,
|
train_dataset=tokenized_dataset,
|
||||||
data_collator=custom_collate_fn
|
data_collator=custom_collate_fn, # Użyj niestandardowego collate_fn
|
||||||
|
batch_size=8 # zmniejszenie rozmiaru batcha
|
||||||
)
|
)
|
||||||
|
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
free_memory()
|
|
||||||
|
|
||||||
# Funkcja generująca odpowiedź
|
# Funkcja generująca odpowiedź
|
||||||
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
||||||
|
|
@ -203,8 +206,8 @@ def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||||
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
||||||
|
|
||||||
# Pobierz źródło z ostatniego tokena
|
# Pobierz źródło z ostatniego tokena
|
||||||
last_token_logits = outputs.scores[-1]
|
last_token_id = outputs.sequences[0][-1].item()
|
||||||
source_idx = torch.argmax(last_token_logits, dim=-1)[-1].item()
|
source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie
|
||||||
source = source_mapper.get_source(source_idx)
|
source = source_mapper.get_source(source_idx)
|
||||||
|
|
||||||
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
|
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue