mod
This commit is contained in:
parent
e068a27261
commit
ed04739b58
14
hft.py
14
hft.py
|
|
@ -1,7 +1,7 @@
|
|||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, GenerationMixin
|
||||
from datasets import Dataset
|
||||
from PIL import Image
|
||||
import re
|
||||
|
|
@ -113,7 +113,7 @@ def custom_collate_fn(batch):
|
|||
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long).cpu()
|
||||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
||||
|
||||
class CustomModel(nn.Module):
|
||||
class CustomModel(nn.Module, GenerationMixin):
|
||||
def __init__(self, model_name, config):
|
||||
super().__init__()
|
||||
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
||||
|
|
@ -122,6 +122,7 @@ class CustomModel(nn.Module):
|
|||
embedding_dim=config.hidden_size,
|
||||
padding_idx=-1
|
||||
)
|
||||
self.config = config
|
||||
self.device = next(self.base_model.parameters()).device
|
||||
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||
|
|
@ -135,6 +136,12 @@ class CustomModel(nn.Module):
|
|||
|
||||
return outputs
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
||||
return self.base_model.prepare_inputs_for_generation(input_ids, **kwargs)
|
||||
|
||||
def _reorder_cache(self, past, beam_idx):
|
||||
return self.base_model._reorder_cache(past, beam_idx)
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
device = next(model.parameters()).device
|
||||
|
|
@ -190,7 +197,8 @@ trainer.train()
|
|||
|
||||
# Funkcja generująca odpowiedź
|
||||
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
||||
device = next(model.parameters()).device
|
||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512).to(device)
|
||||
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
|
|
|
|||
Loading…
Reference in New Issue