ds modification and optimalization
This commit is contained in:
parent
d4f742d0a8
commit
f0e3f7760e
183
hft.py
183
hft.py
|
|
@ -9,20 +9,36 @@ import pytesseract
|
|||
import docx2txt
|
||||
import PyPDF2
|
||||
import json
|
||||
|
||||
from collections import defaultdict
|
||||
from huggingface_hub import login
|
||||
|
||||
login(f"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")
|
||||
login(token="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")
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
# Nowa klasa do zarządzania źródłami
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
||||
self.idx_to_source = {}
|
||||
|
||||
def add_source(self, source):
|
||||
if source and source not in self.source_to_idx:
|
||||
idx = self.source_to_idx[source]
|
||||
self.idx_to_source[idx] = source
|
||||
|
||||
def get_idx(self, source):
|
||||
return self.source_to_idx[source] if source else -1
|
||||
|
||||
def get_source(self, idx):
|
||||
return self.idx_to_source.get(idx, "Unknown")
|
||||
|
||||
def load_file_catalog(catalog_path):
|
||||
with open(catalog_path, 'r', encoding='utf-8') as file:
|
||||
return json.load(file)
|
||||
|
||||
def identify_legal_document(filename, file_catalog):
|
||||
return file_catalog.get(filename, f"")
|
||||
return file_catalog.get(filename, "Opracowanie własne")
|
||||
|
||||
# Funkcja do ekstrakcji tekstu z różnych typów plików
|
||||
def extract_text_from_file(file_path):
|
||||
_, ext = os.path.splitext(file_path)
|
||||
ext = ext.lower()
|
||||
|
|
@ -44,117 +60,142 @@ def extract_text_from_file(file_path):
|
|||
else:
|
||||
return ""
|
||||
|
||||
# Przygotowanie danych
|
||||
def prepare_dataset(directory, catalog_path):
|
||||
def prepare_dataset(directory, catalog_path, source_mapper):
|
||||
file_catalog = load_file_catalog(catalog_path)
|
||||
data = []
|
||||
|
||||
for root, _, files in os.walk(directory):
|
||||
for file in files:
|
||||
file_path = os.path.join(root, file)
|
||||
text = extract_text_from_file(file_path)
|
||||
if text:
|
||||
# Sprawdzenie, czy plik znajduje się w katalogu
|
||||
doc_type = identify_legal_document(file, file_catalog)
|
||||
if doc_type != "Opracowanie własne":
|
||||
# Przetwarzanie dla aktów prawnych
|
||||
articles = re.split(r'(Art\.\s+\d+\.)', text)[1:]
|
||||
for i in range(0, len(articles), 2):
|
||||
if i + 1 < len(articles):
|
||||
article_number = articles[i].strip()
|
||||
article_content = articles[i + 1].strip()
|
||||
data.append({
|
||||
"text": f"{article_number} {article_content}",
|
||||
"source": f"{doc_type}, {article_number}"
|
||||
})
|
||||
else:
|
||||
# Przetwarzanie dla zwykłych dokumentów
|
||||
chunks = [text[i:i + 512] for i in range(0, len(text), 512)]
|
||||
for chunk in chunks:
|
||||
data.append({
|
||||
"text": chunk,
|
||||
"source": f""
|
||||
})
|
||||
if not text:
|
||||
continue
|
||||
|
||||
doc_type = identify_legal_document(file, file_catalog)
|
||||
if doc_type != "Opracowanie własne":
|
||||
articles = re.split(r'(Art\.\s+\d+[\.\s])', text)
|
||||
for i in range(1, len(articles), 2):
|
||||
article_number = articles[i].strip()
|
||||
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
||||
source = f"{doc_type}, {article_number}"
|
||||
source_mapper.add_source(source)
|
||||
|
||||
data.append({
|
||||
"text": f"{article_number} {article_content}",
|
||||
"source_idx": source_mapper.get_idx(source)
|
||||
})
|
||||
else:
|
||||
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
||||
for chunk in chunks:
|
||||
data.append({
|
||||
"text": chunk,
|
||||
"source_idx": -1 # Brak źródła
|
||||
})
|
||||
return data
|
||||
|
||||
|
||||
# Tokenizacja danych
|
||||
def tokenize_function(examples):
|
||||
inputs = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
|
||||
inputs["labels"] = inputs["input_ids"].copy()
|
||||
inputs["source"] = examples["source"]
|
||||
return inputs
|
||||
tokenized = tokenizer(
|
||||
examples["text"],
|
||||
truncation=True,
|
||||
padding="max_length",
|
||||
max_length=512,
|
||||
return_tensors="pt"
|
||||
)
|
||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
||||
tokenized["source_idx"] = examples["source_idx"]
|
||||
return tokenized
|
||||
|
||||
# Dostosowany model
|
||||
class CustomModel(AutoModelForCausalLM):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.source_embedding = nn.Embedding(1000, config.hidden_size) # Zakładamy maksymalnie 1000 różnych źródeł
|
||||
self.source_embedding = nn.Embedding(
|
||||
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
|
||||
embedding_dim=config.hidden_size,
|
||||
padding_idx=-1
|
||||
)
|
||||
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||
outputs = super().forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
labels=labels,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if source_idx is not None:
|
||||
# Dodajemy embedding źródła do hidden states
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
||||
outputs.logits += source_embeds
|
||||
|
||||
def forward(self, input_ids, attention_mask=None, labels=None, source=None):
|
||||
outputs = super().forward(input_ids, attention_mask=attention_mask, labels=labels)
|
||||
if source is not None:
|
||||
source_embeds = self.source_embedding(source)
|
||||
outputs.logits += source_embeds.unsqueeze(1)
|
||||
return outputs
|
||||
|
||||
# Dostosowany Trainer
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False):
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
labels = inputs.pop("labels")
|
||||
source = inputs.pop("source", None) # Użyj None jako wartości domyślnej
|
||||
outputs = model(**inputs, labels=labels)
|
||||
loss = outputs.loss
|
||||
return (loss, outputs) if return_outputs else loss
|
||||
source_idx = inputs.pop("source_idx")
|
||||
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
||||
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
||||
|
||||
|
||||
# Przygotowanie modelu i tokenizera
|
||||
# Inicjalizacja komponentów
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "google/gemma-2-2b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = CustomModel.from_pretrained(model_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Przygotowanie datasetu
|
||||
# Przygotowanie danych
|
||||
catalog_path = "file_catalog.json"
|
||||
data = prepare_dataset("files", catalog_path)
|
||||
data = prepare_dataset("files", catalog_path, source_mapper)
|
||||
dataset = Dataset.from_list(data)
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
|
||||
|
||||
# Inicjalizacja modelu
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel.from_pretrained(model_name, config=config)
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=4,
|
||||
save_steps=10_000,
|
||||
save_total_limit=2,
|
||||
per_device_train_batch_size=2,
|
||||
gradient_accumulation_steps=4,
|
||||
learning_rate=2e-5,
|
||||
fp16=True,
|
||||
logging_steps=100,
|
||||
save_strategy="steps",
|
||||
save_steps=1000,
|
||||
report_to="none"
|
||||
)
|
||||
|
||||
# Inicjalizacja Trainera
|
||||
# Trening
|
||||
trainer = CustomTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
)
|
||||
|
||||
# Trening modelu
|
||||
trainer.train()
|
||||
|
||||
# Zapisanie modelu
|
||||
trainer.save_model("./gemma2_finetuned")
|
||||
# Funkcja generująca odpowiedź
|
||||
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
||||
|
||||
# Funkcja do generowania odpowiedzi z cytowaniem
|
||||
def generate_answer(question, model, tokenizer, dataset):
|
||||
inputs = tokenizer(question, return_tensors="pt")
|
||||
outputs = model.generate(**inputs, max_length=200, num_return_sequences=1, output_scores=True, return_dict_in_generate=True)
|
||||
outputs = model.generate(
|
||||
**inputs,
|
||||
max_length=max_length,
|
||||
num_return_sequences=1,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
)
|
||||
|
||||
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
||||
|
||||
# Znajdź najbardziej prawdopodobne źródło
|
||||
source_probs = outputs.scores[-1][:, model.source_embedding.weight.shape[0]:]
|
||||
most_likely_source_idx = torch.argmax(source_probs).item()
|
||||
most_likely_source = dataset[most_likely_source_idx % len(dataset)]['source']
|
||||
# Pobierz źródło z ostatniego tokena
|
||||
last_token_id = outputs.sequences[0][-1].item()
|
||||
source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie
|
||||
source = source_mapper.get_source(source_idx)
|
||||
|
||||
return f"{answer}\n\nŹródło: {most_likely_source}"
|
||||
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
|
||||
|
||||
# Przykład użycia
|
||||
question = "Ile dni urlopu przysługuje pracownikowi?"
|
||||
answer = generate_answer(question, model, tokenizer, dataset)
|
||||
answer = generate_answer(question, model, tokenizer, source_mapper)
|
||||
print(answer)
|
||||
Loading…
Reference in New Issue