ds modification and optimalization

This commit is contained in:
l.gabrysiak 2025-02-25 13:34:04 +01:00
parent d4f742d0a8
commit f0e3f7760e
1 changed files with 114 additions and 73 deletions

183
hft.py
View File

@ -9,20 +9,36 @@ import pytesseract
import docx2txt
import PyPDF2
import json
from collections import defaultdict
from huggingface_hub import login
login(f"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")
login(token="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")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Nowa klasa do zarządzania źródłami
class SourceMapper:
def __init__(self):
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
self.idx_to_source = {}
def add_source(self, source):
if source and source not in self.source_to_idx:
idx = self.source_to_idx[source]
self.idx_to_source[idx] = source
def get_idx(self, source):
return self.source_to_idx[source] if source else -1
def get_source(self, idx):
return self.idx_to_source.get(idx, "Unknown")
def load_file_catalog(catalog_path):
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
def identify_legal_document(filename, file_catalog):
return file_catalog.get(filename, f"")
return file_catalog.get(filename, "Opracowanie własne")
# Funkcja do ekstrakcji tekstu z różnych typów plików
def extract_text_from_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
@ -44,117 +60,142 @@ def extract_text_from_file(file_path):
else:
return ""
# Przygotowanie danych
def prepare_dataset(directory, catalog_path):
def prepare_dataset(directory, catalog_path, source_mapper):
file_catalog = load_file_catalog(catalog_path)
data = []
for root, _, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
text = extract_text_from_file(file_path)
if text:
# Sprawdzenie, czy plik znajduje się w katalogu
doc_type = identify_legal_document(file, file_catalog)
if doc_type != "Opracowanie własne":
# Przetwarzanie dla aktów prawnych
articles = re.split(r'(Art\.\s+\d+\.)', text)[1:]
for i in range(0, len(articles), 2):
if i + 1 < len(articles):
article_number = articles[i].strip()
article_content = articles[i + 1].strip()
data.append({
"text": f"{article_number} {article_content}",
"source": f"{doc_type}, {article_number}"
})
else:
# Przetwarzanie dla zwykłych dokumentów
chunks = [text[i:i + 512] for i in range(0, len(text), 512)]
for chunk in chunks:
data.append({
"text": chunk,
"source": f""
})
if not text:
continue
doc_type = identify_legal_document(file, file_catalog)
if doc_type != "Opracowanie własne":
articles = re.split(r'(Art\.\s+\d+[\.\s])', text)
for i in range(1, len(articles), 2):
article_number = articles[i].strip()
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
source = f"{doc_type}, {article_number}"
source_mapper.add_source(source)
data.append({
"text": f"{article_number} {article_content}",
"source_idx": source_mapper.get_idx(source)
})
else:
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
for chunk in chunks:
data.append({
"text": chunk,
"source_idx": -1 # Brak źródła
})
return data
# Tokenizacja danych
def tokenize_function(examples):
inputs = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
inputs["labels"] = inputs["input_ids"].copy()
inputs["source"] = examples["source"]
return inputs
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512,
return_tensors="pt"
)
tokenized["labels"] = tokenized["input_ids"].clone()
tokenized["source_idx"] = examples["source_idx"]
return tokenized
# Dostosowany model
class CustomModel(AutoModelForCausalLM):
def __init__(self, config):
super().__init__(config)
self.source_embedding = nn.Embedding(1000, config.hidden_size) # Zakładamy maksymalnie 1000 różnych źródeł
self.source_embedding = nn.Embedding(
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
embedding_dim=config.hidden_size,
padding_idx=-1
)
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
outputs = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
**kwargs
)
if source_idx is not None:
# Dodajemy embedding źródła do hidden states
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
outputs.logits += source_embeds
def forward(self, input_ids, attention_mask=None, labels=None, source=None):
outputs = super().forward(input_ids, attention_mask=attention_mask, labels=labels)
if source is not None:
source_embeds = self.source_embedding(source)
outputs.logits += source_embeds.unsqueeze(1)
return outputs
# Dostosowany Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels")
source = inputs.pop("source", None) # Użyj None jako wartości domyślnej
outputs = model(**inputs, labels=labels)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
source_idx = inputs.pop("source_idx")
outputs = model(**inputs, labels=labels, source_idx=source_idx)
return (outputs.loss, outputs) if return_outputs else outputs.loss
# Przygotowanie modelu i tokenizera
# Inicjalizacja komponentów
source_mapper = SourceMapper()
model_name = "google/gemma-2-2b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = CustomModel.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie datasetu
# Przygotowanie danych
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path)
data = prepare_dataset("files", catalog_path, source_mapper)
dataset = Dataset.from_list(data)
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
# Inicjalizacja modelu
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = CustomModel.from_pretrained(model_name, config=config)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=True,
logging_steps=100,
save_strategy="steps",
save_steps=1000,
report_to="none"
)
# Inicjalizacja Trainera
# Trening
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
# Trening modelu
trainer.train()
# Zapisanie modelu
trainer.save_model("./gemma2_finetuned")
# Funkcja generująca odpowiedź
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
# Funkcja do generowania odpowiedzi z cytowaniem
def generate_answer(question, model, tokenizer, dataset):
inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200, num_return_sequences=1, output_scores=True, return_dict_in_generate=True)
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True,
output_scores=True,
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
# Znajdź najbardziej prawdopodobne źródło
source_probs = outputs.scores[-1][:, model.source_embedding.weight.shape[0]:]
most_likely_source_idx = torch.argmax(source_probs).item()
most_likely_source = dataset[most_likely_source_idx % len(dataset)]['source']
# Pobierz źródło z ostatniego tokena
last_token_id = outputs.sequences[0][-1].item()
source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie
source = source_mapper.get_source(source_idx)
return f"{answer}\n\nŹródło: {most_likely_source}"
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
# Przykład użycia
question = "Ile dni urlopu przysługuje pracownikowi?"
answer = generate_answer(question, model, tokenizer, dataset)
answer = generate_answer(question, model, tokenizer, source_mapper)
print(answer)