mod
This commit is contained in:
parent
0b00a502db
commit
f97eeea435
|
|
@ -2,7 +2,7 @@ USTAWA
|
||||||
|
|
||||||
z dnia 26 czerwca 1974 r.
|
z dnia 26 czerwca 1974 r.
|
||||||
|
|
||||||
Kodeks pracy1)
|
Kodeks pracy
|
||||||
|
|
||||||
(Dz. U. z 2023 r. poz. 1465 oraz z 2024 r. poz. 878, 1222, 1871 i 1965)
|
(Dz. U. z 2023 r. poz. 1465 oraz z 2024 r. poz. 878, 1222, 1871 i 1965)
|
||||||
|
|
||||||
|
|
@ -11,8 +11,6 @@ obowiązuje od dnia 1 stycznia 1975 r.
|
||||||
|
|
||||||
historia od dnia 16 lutego 1998 r.
|
historia od dnia 16 lutego 1998 r.
|
||||||
|
|
||||||
Preambuła (uchylona)
|
|
||||||
|
|
||||||
DZIAŁ PIERWSZY
|
DZIAŁ PIERWSZY
|
||||||
Przepisy ogólne
|
Przepisy ogólne
|
||||||
|
|
||||||
119
hft.py
119
hft.py
|
|
@ -15,7 +15,7 @@ from huggingface_hub import login
|
||||||
# Konfiguracja
|
# Konfiguracja
|
||||||
os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
login(token="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")
|
login(token="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") # Zastąp swoim tokenem HF
|
||||||
|
|
||||||
class SourceMapper:
|
class SourceMapper:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
|
@ -34,14 +34,19 @@ class SourceMapper:
|
||||||
return self.idx_to_source.get(idx, "Unknown")
|
return self.idx_to_source.get(idx, "Unknown")
|
||||||
|
|
||||||
def load_file_catalog(catalog_path):
|
def load_file_catalog(catalog_path):
|
||||||
|
try:
|
||||||
with open(catalog_path, 'r', encoding='utf-8') as file:
|
with open(catalog_path, 'r', encoding='utf-8') as file:
|
||||||
return json.load(file)
|
return json.load(file)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Błąd wczytywania katalogu plików: {str(e)}")
|
||||||
|
return {}
|
||||||
|
|
||||||
def identify_legal_document(filename, file_catalog):
|
def identify_legal_document(filename, file_catalog):
|
||||||
base_name = os.path.splitext(filename)[0]
|
base_name = os.path.splitext(filename)[0]
|
||||||
return file_catalog.get(base_name, "Opracowanie własne")
|
return file_catalog.get(base_name, "Opracowanie własne")
|
||||||
|
|
||||||
def extract_text_from_file(file_path):
|
def extract_text_from_file(file_path):
|
||||||
|
try:
|
||||||
_, ext = os.path.splitext(file_path)
|
_, ext = os.path.splitext(file_path)
|
||||||
ext = ext.lower()
|
ext = ext.lower()
|
||||||
|
|
||||||
|
|
@ -60,40 +65,91 @@ def extract_text_from_file(file_path):
|
||||||
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
||||||
return pytesseract.image_to_string(Image.open(file_path))
|
return pytesseract.image_to_string(Image.open(file_path))
|
||||||
else:
|
else:
|
||||||
|
print(f"Nieobsługiwany format pliku: {ext}")
|
||||||
|
return ""
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Błąd ekstrakcji tekstu: {str(e)}")
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
def prepare_dataset(directory, catalog_path, source_mapper):
|
def prepare_dataset(directory, catalog_path, source_mapper):
|
||||||
file_catalog = load_file_catalog(catalog_path)
|
file_catalog = load_file_catalog(catalog_path)
|
||||||
data = []
|
data = []
|
||||||
|
|
||||||
|
print(f"\n{'='*50}\nDIAGNOSTYKA DANYCH\n{'='*50}")
|
||||||
|
|
||||||
|
if not os.path.exists(directory):
|
||||||
|
print(f"Brak katalogu: {directory}")
|
||||||
|
return data
|
||||||
|
|
||||||
for root, _, files in os.walk(directory):
|
for root, _, files in os.walk(directory):
|
||||||
for file in files:
|
if not files:
|
||||||
file_path = os.path.join(root, file)
|
print(f"Brak plików w katalogu: {root}")
|
||||||
text = extract_text_from_file(file_path)
|
|
||||||
if not text:
|
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
for file in files:
|
||||||
|
file_path = os.path.join(root, file)
|
||||||
|
print(f"\nPrzetwarzanie pliku: {file_path}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
text = extract_text_from_file(file_path)
|
||||||
|
if not text.strip():
|
||||||
|
print("Pominięto - brak tekstu")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print(f"Długość tekstu: {len(text)} znaków")
|
||||||
|
|
||||||
doc_type = identify_legal_document(file, file_catalog)
|
doc_type = identify_legal_document(file, file_catalog)
|
||||||
|
print(f"Rozpoznany typ dokumentu: {doc_type}")
|
||||||
|
|
||||||
if doc_type != "Opracowanie własne":
|
if doc_type != "Opracowanie własne":
|
||||||
articles = re.split(r'(#+\s*Art\.\s*\d+[\.\s]?)', text)
|
articles = re.split(r'(?i)(#+\s*art\.?\s*\d+[\.\s]?)', text)
|
||||||
for i in range(1, len(articles), 2):
|
print(f"Znaleziono {len(articles)} fragmentów")
|
||||||
article_number = re.sub(r'#+\s*', '', articles[i].strip())
|
|
||||||
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
|
||||||
source = f"{doc_type}, {article_number}"
|
|
||||||
source_mapper.add_source(source)
|
|
||||||
|
|
||||||
|
if len(articles) < 2:
|
||||||
|
print("Brak artykułów w dokumencie prawnym!")
|
||||||
|
continue
|
||||||
|
|
||||||
|
for i in range(1, len(articles), 2):
|
||||||
|
article_number = re.sub(r'#+\s*', '', articles[i].strip(), flags=re.IGNORECASE)
|
||||||
|
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
||||||
|
|
||||||
|
if not article_content:
|
||||||
|
print(f"Pominięto pusty artykuł: {article_number}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
source = f"{doc_type}, {article_number}"
|
||||||
|
print(f"Dodano artykuł: {source}")
|
||||||
|
|
||||||
|
source_mapper.add_source(source)
|
||||||
data.append({
|
data.append({
|
||||||
"text": f"{article_number} {article_content}",
|
"text": f"{article_number} {article_content}",
|
||||||
"source_idx": source_mapper.get_idx(source)
|
"source_idx": source_mapper.get_idx(source)
|
||||||
})
|
})
|
||||||
else:
|
else:
|
||||||
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
print("Traktowanie jako opracowanie własne")
|
||||||
|
clean_text = re.sub(r'\s+', ' ', text).strip()
|
||||||
|
chunks = [clean_text[i:i+512] for i in range(0, len(clean_text), 512)]
|
||||||
|
chunks = [c for c in chunks if c.strip()]
|
||||||
|
|
||||||
for chunk in chunks:
|
for chunk in chunks:
|
||||||
data.append({
|
data.append({
|
||||||
"text": chunk,
|
"text": chunk,
|
||||||
"source_idx": -1
|
"source_idx": -1
|
||||||
})
|
})
|
||||||
|
print(f"Dodano {len(chunks)} chunków")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Błąd podczas przetwarzania pliku: {str(e)}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print(f"\nPodsumowanie przygotowania danych:")
|
||||||
|
print(f"Łączna liczba przykładów: {len(data)}")
|
||||||
|
if data:
|
||||||
|
print("Przykładowy wpis:")
|
||||||
|
print(json.dumps(data[0], indent=2, ensure_ascii=False))
|
||||||
|
else:
|
||||||
|
print("BRAK DANYCH - sprawdź diagnostykę powyżej")
|
||||||
|
|
||||||
return data
|
return data
|
||||||
|
|
||||||
class CustomModel(nn.Module):
|
class CustomModel(nn.Module):
|
||||||
|
|
@ -104,8 +160,8 @@ class CustomModel(nn.Module):
|
||||||
|
|
||||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||||
if source_idx is not None:
|
if source_idx is not None:
|
||||||
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
|
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
|
||||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
|
source_embeds = self.source_embedding(valid_indices).unsqueeze(1).expand(-1, input_ids.size(1), -1)
|
||||||
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
|
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
|
||||||
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
|
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||||
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
|
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
|
||||||
|
|
@ -130,6 +186,11 @@ def main():
|
||||||
# Przygotowanie danych
|
# Przygotowanie danych
|
||||||
catalog_path = "file_catalog.json"
|
catalog_path = "file_catalog.json"
|
||||||
data = prepare_dataset("files", catalog_path, source_mapper)
|
data = prepare_dataset("files", catalog_path, source_mapper)
|
||||||
|
|
||||||
|
if not data:
|
||||||
|
print("\nBrak danych do treningu! Sprawdź pliki w katalogu 'files' i diagnostykę powyżej.")
|
||||||
|
return
|
||||||
|
|
||||||
dataset = Dataset.from_list(data)
|
dataset = Dataset.from_list(data)
|
||||||
|
|
||||||
def tokenize_function(examples):
|
def tokenize_function(examples):
|
||||||
|
|
@ -141,13 +202,13 @@ def main():
|
||||||
return_tensors="pt"
|
return_tensors="pt"
|
||||||
)
|
)
|
||||||
return {
|
return {
|
||||||
"input_ids": tokenized["input_ids"],
|
"input_ids": tokenized["input_ids"][0],
|
||||||
"attention_mask": tokenized["attention_mask"],
|
"attention_mask": tokenized["attention_mask"][0],
|
||||||
"labels": tokenized["input_ids"].clone(),
|
"labels": tokenized["input_ids"][0].clone(),
|
||||||
"source_idx": examples["source_idx"]
|
"source_idx": examples["source_idx"]
|
||||||
}
|
}
|
||||||
|
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
|
tokenized_dataset = dataset.map(tokenize_function, batched=False)
|
||||||
|
|
||||||
def custom_collate_fn(features):
|
def custom_collate_fn(features):
|
||||||
return {
|
return {
|
||||||
|
|
@ -166,16 +227,15 @@ def main():
|
||||||
# Trening
|
# Trening
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
num_train_epochs=5,
|
num_train_epochs=3,
|
||||||
per_device_train_batch_size=2,
|
per_device_train_batch_size=2,
|
||||||
gradient_accumulation_steps=4,
|
gradient_accumulation_steps=4,
|
||||||
learning_rate=3e-5,
|
learning_rate=2e-5,
|
||||||
fp16=torch.cuda.is_available(),
|
fp16=torch.cuda.is_available(),
|
||||||
logging_steps=10,
|
logging_steps=10,
|
||||||
save_strategy="steps",
|
save_strategy="steps",
|
||||||
save_steps=1000,
|
save_steps=500,
|
||||||
report_to="none",
|
report_to="none",
|
||||||
weight_decay=0.01,
|
|
||||||
remove_unused_columns=False
|
remove_unused_columns=False
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
@ -185,13 +245,16 @@ def main():
|
||||||
train_dataset=tokenized_dataset,
|
train_dataset=tokenized_dataset,
|
||||||
data_collator=custom_collate_fn
|
data_collator=custom_collate_fn
|
||||||
)
|
)
|
||||||
print("Rozpoczęcie treningu...")
|
print("\nRozpoczęcie treningu...")
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
# Testowanie
|
# Testowanie
|
||||||
def generate_answer(question):
|
def generate_answer(question):
|
||||||
|
model.eval()
|
||||||
|
prompt = f"[PYTANIE PRAWNE] {question}"
|
||||||
|
|
||||||
inputs = tokenizer(
|
inputs = tokenizer(
|
||||||
f"[PYTANIE PRAWNE] {question}",
|
prompt,
|
||||||
return_tensors="pt",
|
return_tensors="pt",
|
||||||
truncation=True,
|
truncation=True,
|
||||||
max_length=512
|
max_length=512
|
||||||
|
|
@ -210,13 +273,13 @@ def main():
|
||||||
)
|
)
|
||||||
|
|
||||||
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
answer = answer.split("[PYTANIE PRAWNE]")[-1].strip()
|
answer = answer.replace(prompt, "").strip()
|
||||||
|
|
||||||
sources = set()
|
sources = set()
|
||||||
for match in re.finditer(r'Art\.\s*\d+', answer):
|
for match in re.finditer(r'(?i)art\.?\s*\d+', answer):
|
||||||
article_ref = match.group(0).strip()
|
article_ref = match.group(0).strip()
|
||||||
for idx, source in source_mapper.idx_to_source.items():
|
for source in source_mapper.idx_to_source.values():
|
||||||
if article_ref in source:
|
if article_ref.lower() in source.lower():
|
||||||
sources.add(source)
|
sources.add(source)
|
||||||
|
|
||||||
return {
|
return {
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue